UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA
Coordenação do Curso de Graduação em Engenharia Química

PROJETO PEDAGÓGICO DO CURSO DE GRADUAÇÃO EM ENGENHARIA QUÍMICA

SÃO CARLOS
Novembro de 2009
Atualizado em outubro de 2017
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

REITOR

Prof.ª Dr.ª Wanda Aparecida Machado Hoffmann

VICE-REITOR

Prof. Dr. Walter Libardi

PRÓ-REITORIA DE GRADUAÇÃO

Prof. Dr. Ademir Donizeti Caldeira

DIRETOR E VICE-DIRETOR DO CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

Profa. Dra. Sheyla Mara Baptista Serra
Prof. Dr. Claudio Antonio Cardoso

CHEFE E VICE-CHEFE DO DEPARTAMENTO DE ENGENHARIA QUÍMICA

Prof. Dr. João Batista Oliveira dos Santos
Prof. Dr. Ruy de Sousa Junior

COORDENADOR E VICE-COORDENADOR DO CURSO DE GRADUAÇÃO EM ENGENHARIA QUÍMICA

Prof.ª Dr.ª Rosineide Gomes da Silva Cruz
Prof.ª Dr.ª Vâdia Giovana Guerra Bêttega

SECRETÁRIO DO CURSO DE GRADUAÇÃO EM ENGENHARIA QUÍMICA

Carlos Augusto Soares
APRESENTAÇÃO

O curso de Engenharia Química da Universidade Federal de São Carlos (UFSCar) foi criado em 30 de abril de 1976, na 59ª Reunião do Conselho Federal de Curadores da Fundação Universidade Federal de São Carlos, sendo o primeiro vestibular realizado em julho do mesmo ano, com o oferecimento de 30 vagas.

Também é objetivo deste catálogo apresentar informações sobre o Departamento de Engenharia Química, a filosofia, infraestrutura e sobre a Matriz Curricular do Curso, propiciando uma orientação aos alunos e professores sobre o curso e seu projeto pedagógico.
SUMÁRIO

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introdução</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Breve Histórico da Engenharia Química</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Histórico do Curso de Engenharia Química da UFSCar</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Avaliação do Curso de Engenharia Química da UFSCar</td>
<td>4</td>
</tr>
<tr>
<td>1.5. Apresentação da Última Reforma Curricular</td>
<td>8</td>
</tr>
<tr>
<td>2. Aspectos Legislativos da Profissão e Atuação Profissional</td>
<td>12</td>
</tr>
<tr>
<td>2.1. Diretrizes Curriculares</td>
<td>14</td>
</tr>
<tr>
<td>2.2. Definição do Perfil do Profissional a ser Formado</td>
<td>15</td>
</tr>
<tr>
<td>2.3. Grupos de Conhecimentos Fundamentais à Formação do Profissional de</td>
<td>16</td>
</tr>
<tr>
<td>Engenharia Química e Definição dos Conteúdos</td>
<td></td>
</tr>
<tr>
<td>2.4. Competências, Habilidades, Atitudes e Valores Fundamentais à Formação</td>
<td>19</td>
</tr>
<tr>
<td>3. Organização Curricular</td>
<td>22</td>
</tr>
<tr>
<td>3.1. Disciplinas e Departamentos Responsáveis</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1. Disciplinas Obrigatórias</td>
<td>22</td>
</tr>
<tr>
<td>3.1.2. Disciplinas Optativas Técnicas</td>
<td>24</td>
</tr>
<tr>
<td>3.1.3. Disciplinas Optativas de Ciências Humanas e Sociais</td>
<td>25</td>
</tr>
<tr>
<td>3.2. Articulação entre Disciplinas e Atividades Curriculares</td>
<td>25</td>
</tr>
<tr>
<td>3.2.1. Regulamento das Disciplinas Optativas Convênio</td>
<td>29</td>
</tr>
<tr>
<td>3.3. Atividades Curriculares Complementares</td>
<td>30</td>
</tr>
<tr>
<td>3.4. Temáticas Educação Ambiental, Direitos Humanos e História e Cultura</td>
<td>33</td>
</tr>
<tr>
<td>3.5. Estágio Curricular</td>
<td>35</td>
</tr>
<tr>
<td>3.6. Trabalho de Graduação</td>
<td>42</td>
</tr>
<tr>
<td>3.7. Tratamento Metodológico</td>
<td>45</td>
</tr>
<tr>
<td>3.8. Princípios de Avaliação</td>
<td>47</td>
</tr>
<tr>
<td>3.9. Ementas e Objetivos Gerais das Disciplinas</td>
<td>50</td>
</tr>
<tr>
<td>3.9.1. Ementário das Disciplinas Obrigatórias por Semestre</td>
<td>50</td>
</tr>
<tr>
<td>3.9.2. Disciplinas Optativas Técnicas</td>
<td>130</td>
</tr>
<tr>
<td>3.9.3. Disciplinas Optativas de Ciências Humanas e Sociais</td>
<td>159</td>
</tr>
</tbody>
</table>
3.10. Matriz Curricular e Periodização das Disciplinas...169

4. Infraestrutura Geral..173
4.1. Infraestrutura Necessária ao Funcionamento do Curso..173
4.2. Corpo Docente e Técnico-administrativo para o Curso..179

5. Questões Administrativas Gerais Afetas ao Curso...183

6. Bibliografia..185
1. Introdução

1.1. Breve Histórico da Engenharia Química

Os primórdios da Engenharia Química em escala fabril, de uma forma similar à que conhecemos hoje, remontam aos meados do século XIX, com a Europa, notadamente Alemanha, Inglaterra e França, desempenhando notáveis esforços para a produção de bens de consumo duráveis em larga escala, principalmente tecidos. Os profissionais que desempenhavam as atividades do desenvolvimento desses processos fabris eram químicos e engenheiros mecânicos. Esses processos eram muitas vezes simples ampliações das escalas de laboratório e muitas vezes realizadas de maneira bastante rudimentar: escolha das matérias-primas, seleção de algumas etapas de processamento, usualmente realizadas em grandes tachos, e vendas dos produtos. Aspectos importantes como a otimização do processo, buscando economizar energia, maior produção por unidade de matéria-prima ou proteção ao meio ambiente eram simplesmente ignorados. Em 1883 o amadorismo na operação dessas fábricas chegou a tal nível que o governo inglês viu-se obrigado a promulgar o “Alkali Works Act” que limitava a emissão de ácido clorídrico na produção de hidróxidos alcalinos, tal a devastação provocada pelo então muito utilizado processo Le Blanc. Essa foi, com certeza, a primeira lei voltada para o meio ambiente, decorrente da industrialização, na história moderna da humanidade. A aplicação da lei criou a necessidade da existência de um corpo técnico de fiscais; dentre eles George E. Davis (1850-1906). Durante suas inspeções, Davis foi acumulando conhecimento técnico e percebendo a necessidade da existência de um novo profissional, cujos conhecimentos estivessem entre o do químico e do engenheiro mecânico e que seria capaz de aplicar uma abordagem mais sistemática ao desenvolvimento de novas fábricas, bem como à sua operação. Tentou em 1880, sem sucesso, criar a Sociedade dos Engenheiros Químicos, em Londres. Sem se abalar, em 1887 profere doze palestras sobre a operação de fábricas na Escola Técnica de Manchester, hoje Universidade de Manchester. Nessas palestras, que são admitidas como sendo as primeiras aulas de Engenharia
Química, Davis não utiliza processos de fabricação de produtos específicos, mas sim o conceito de unidades comuns a todos eles. Em 1901 ele publicou o Manual do Engenheiro Químico, onde destacava conceitos de segurança, plantas piloto e operações unitárias, bastante conhecidas do engenheiro químico de hoje. O sucesso do manual foi tão grande a ponto de sair uma segunda edição em 1904, dois anos antes de sua morte.

Do outro lado do Atlântico, os Estados Unidos, até então uma nação de segunda linha no campo da indústria química, optaram por não diversificar a fabricação de produtos químicos, onde os alemães eram imbatíveis, mas produzir alguns poucos de alto valor agregado e em grande quantidade. Em 1884 o processo Solvay de obtenção de bicarbonato de sódio, desenvolvido em 1863 pelo químico belga Ernest Solvay, é transferido para os EUA, trazendo algumas novidades: 1) continuidade, ou seja, a matéria prima e os produtos fluem continuamente para dentro e para fora do processo; 2) eficiência no aproveitamento da matéria-prima; 3) simplicidade na purificação dos produtos; 4) limpeza por não gerar prejuízo ao meio ambiente.

Em 1888, o professor de Química Orgânica Industrial, Lewis Norton, inaugurou o curso de número 10 do Instituto de Tecnologia de Massachussets (EUA), encarregado da formação de Engenheiros Químicos. A forma curricular embrionária desse primeiro período curricular buscava organizar e sistematizar os conhecimentos da nova profissão que surgia. Em 1916 foi criada a Escola de Engenharia Química na mesma instituição. Nove anos mais tarde, em 1925, seria criado o primeiro curso de Engenharia Química do Brasil, na Escola Politécnica da USP, embora já existisse o curso de Engenharia Industrial desde 1896.

Nessa primeira fase a caracterização desse profissional, o engenheiro químico, foi evoluindo de uma formação baseada no experimentalismo industrial para uma maior sistematização do conhecimento. Ao transformar matéria-prima em produtos de maior valor agregado os primeiros engenheiros químicos começaram a se familiarizar com as operações físicas e químicas necessárias para essas transformações. Exemplos dessas operações incluíam filtração, moagem, transporte de sólidos e fluidos, etc. Essas “operações unitárias” tornaram-se uma maneira adequada de organizar a "ciência da engenharia química". Em 1915, Arthur Little, em carta endereçada ao presidente do Massachussets Institute of Technology enfatizou “o potencial das operações unitárias para distinguir a Engenharia Química das demais profissões e também fornecer aos programas de engenharia química um foco comum”. Essa concepção definiu o que se pode chamar de segundo período curricular da engenharia química.
Na década de 50, os professores Neal R. Amundson e Rutherford Aris iniciaram na Universidade de Minnesota uma série de estudos relacionados à modelagem matemática de reatores químicos e em 1960 ocorreu o lançamento daquela que seria talvez a maior revolução na forma de se ensinar os fundamentos da engenharia química: o lançamento do livro “Transport Phenomena” dos professores Bird, Stewart e Lightfoot, da Universidade de Wisconsin. Essa década pode ser considerada como a do início do terceiro período curricular. Nesse período é criado em 1976, o Curso de Engenharia Química da UFSCar, com o objetivo de formar “um engenheiro que aliasse sólida base nos fundamentos à capacidade de iniciativa e crítica”.

1.2. Histórico do Curso de Engenharia Química da UFSCar

O Curso teve seu primeiro Processo Seletivo (Vestibular) realizado em julho do mesmo ano com o oferecimento de 30 vagas. Em 1991, esse número foi ampliado para 40 e em 1999 para 60 vagas. Com a implantação do Programa de Apoio a Planos de Reestruturação e Expansão das Universidades Federais (Reuni), a partir do ano de 2009 o curso de Engenharia Química passou a oferecer 80 vagas.

O Curso tem evolvido rapidamente, sendo apontado hoje como uns dos melhores do país. Essa posição privilegiada tem sido o resultado da alta qualificação do Corpo Docente do Departamento de Engenharia Química e da existência de uma completa infraestrutura laboratorial, a qual tem permitido o oferecimento de ensino de qualidade.

O Curso em período integral oferece 80 vagas e apresenta carga horária de 3960 horas, referentes a 264 créditos, distribuída em 10 semestres.

Devido a esta notoriedade, nos últimos processos seletivos, o Curso de Engenharia Química da UFSCar vem tendo boa procura com elevada relação candidato/vaga.

Na sua criação, o cerne da estrutura curricular do Curso de Graduação em Engenharia Química da UFSCar baseou-se nos que existiam nas principais escolas do Estado de São Paulo naquela época, porém com uma forte ênfase em atividades de práticas laboratoriais. Para tanto se desenvolveu, talvez, um dos mais completos laboratórios de Fenômenos de Transporte da época.
O Departamento de Engenharia Química, criado na mesma época e responsável pelas disciplinas profissionalizantes e específicas do Curso, constituiu seu corpo docente de maneira eclética, quanto à formação de seus professores, todos eles oriundos das melhores escolas do eixo Rio de Janeiro - São Paulo. Essa vocação laboratorial, mostrando ao aluno a aplicação prática dos conhecimentos teóricos aprendidos em sala de aula tornou-se imediatamente um diferencial que rapidamente se traduziu em aceitação pelo mercado de trabalho dos alunos formados na UFSCar. Em uma segunda etapa, efetuou-se um enorme esforço para titulação de seu corpo docente no Brasil e no Exterior, nos melhores programas de pós-graduação existentes, dessa forma elevando a capacitação dos docentes do curso de graduação de Engenharia Química.

A década de 80 promoveu uma grande revolução em todos os setores, com o advento da microinformática, e a de 90 com o fenômeno da globalização e do seu lado mais visível, a INTERNET. Com o crescente surgimento de novas tecnologias, novos desafios surgiram para a profissão de engenheiro químico e o Curso de Engenharia Química da UFSCar percebeu a necessidade de evolução, propondo ao longo de sua existência três alterações curriculares, implantadas em 1980, 1984 e 1998, respectivamente.

1.3. Avaliação do Curso de Engenharia Química da UFSCar

Desde 2005 o curso de Engenharia Química da UFSCar é classificado como curso cinco estrelas pelo Guia do Estudante (http://guiadoestudante.abril.com.br/).

Tal como citado, durante o funcionamento desde a criação de curso ocorreram três reformulações curriculares. Na sequência são comentados os principais motivos e as principais mudanças curriculares implementadas por cada uma delas.

As discussões para a primeira reforma curricular (1980) iniciaram-se um ano após ter-se estabelecido o primeiro currículo. A referida reforma foi desencadeada devido fundamentalmente à proposta de alteração de disciplinas e ementas por parte de outros departamentos, à solicitação de algumas modificações pelo Conselho Federal de Educação, à necessidade de uma revisão geral dos requisitos exigidos na matrícula em algumas disciplinas e à necessidade da criação de novas disciplinas pela reestruturação do conjunto de disciplinas básicas.

Esta primeira reforma resultou basicamente em mudanças de ementas e nomes de disciplinas, não alterando a carga horária e os requisitos.

A discussão da segunda reforma curricular (1984) partiu de decisão da Câmara de Graduação da UFSCar (CaG), que na época recomendou aos Cursos um reestudo dos seus currículos com objetivo de diminuir o número de créditos. Para o Curso de Engenharia Química essa recomendação estipulava um número total em torno de 250 de créditos.

O resultado desta segunda reforma levou efetivamente a uma redução do número de créditos, conseguida através da redefinição de ementas, fusão e/ou eliminação de disciplinas e otimização do seu número de créditos.

A Engenharia Química brasileira é uma das poucas áreas do Ensino Superior que têm por hábito reunir bianualmente professores de todo o país em um encontro patrocinado por uma associação de classe, a Associação Brasileira de Engenharia Química (ABEQ). Esses Encontros Nacionais de Ensino de Engenharia Química (ENBEQ’s) permitem, além da reflexão sobre os ensinos de graduação e pós-graduação, uma troca de experiências entre as diversas escolas. Dessas discussões e das experiências acumuladas pelos corpos docentes dos diversos departamentos que oferecem disciplinas para o Curso de Engenharia Química, resultou, no final dos anos 90, uma nova proposta curricular.

A estrutura curricular vigente na época fruto da segunda reforma curricular, aplicada por mais de 12 anos, tinha sido a responsável pelo sucesso do Curso, verificado pela forte demanda dos nossos profissionais pelos diferentes segmentos empresariais do Setor Químico, Institutos de Pesquisa e Universidades.
No entanto, devido às ocorrências, por um lado de uma aceleração sem precedentes do desenvolvimento científico e tecnológico, envolvendo aspectos relacionados com a informática, qualidade, meio ambiente, segurança e, por outro, de mudanças radicais na economia nacional e internacional, principalmente no que diz respeito à abertura de mercado e globalização, resultou na necessidade de criar mecanismos no curso, que permitiriam aos alunos egressos saírem preparados para enfrentar os desafios tecnológicos impostos pela sociedade, que cada vez mais exige mudanças na eficiência e qualidade dos bens que consome e da proteção ao meio ambiente pela aplicação de tecnologias “limpas”. Dessa forma surgiu uma forte necessidade de se introduzir mudanças na estrutura curricular do curso de modo a atingir esses objetivos.

As mudanças curriculares sugeridas na terceira reforma curricular (1998) nasceram após um amplo processo de autoavaliação do curso, que detectou as necessidades de reformulação especificadas nos itens a seguir.

Assim, a Coordenação de Curso, através de uma Comissão de Reformulação Curricular designada pelo Conselho de Coordenação de Curso, promoveu uma ampla discussão com os diferentes departamentos que ministram disciplinas ao nosso curso. A diretriz principal das discussões foi uma redefinição do esforço discente/docente com vistas à participação mais ativa e independente do aluno no processo de aprendizagem, introdução de um maior uso de métodos computacionais e de informática durante o processo de ensino/aprendizagem, procurando estimular sua capacidade criativa e inovadora na solução de desafios tecnológicos.

As linhas gerais que nortearam a terceira reforma curricular (1998) foram:

a) Aproximação e interpenetração das disciplinas básicas e profissionalizantes

Reduziu-se a separação do curso em ciclo básico e ciclo profissional. O aluno passou a ter contato com disciplinas específicas de Engenharia Química mais cedo e disciplinas consideradas básicas foram aproximadas de suas aplicações mais diretas. A disciplina Introdução à Engenharia Química voltou a fazer parte do currículo, possibilitando ao aluno recém-ingresso, uma visão geral da profissão e do curso, bem como um maior contato com as Áreas de Ensino e Pesquisa do Departamento de Engenharia Química.

b) Reestruturação dos laboratórios didáticos

Foram criadas disciplinas específicas de laboratório de engenharia química, especificamente de Fenômenos de Transporte, Operações Unitárias e Engenharia das Reações.
Isto permitiu uma melhor utilização dos laboratórios didáticos do DEQ, com turmas menores e professores responsáveis pela orientação e acompanhamento dos alunos. No entanto, a vinculação entre conceituação teórica e prática em laboratório didático permaneceu.

c) Maior utilização de recursos computacionais

Os alunos foram incentivados a utilizarem recursos computacionais ao longo de todo o curso e não apenas em disciplinas específicas de programação e simulação, a desenvolver programas computacionais e também a utilizar os chamados “softwares” básicos e específicos de engenharia química.

d) Introdução de disciplinas formadoras da capacidade criativa e inovadora

Foram criadas as disciplinas Desenvolvimento de Processos 1 e 2 que introduziram laboratório nas disciplinas de processos. Os alunos, trabalhando em equipes sob a orientação de docentes, têm disponível um laboratório para a montagem de experimentos que possam fornecer informações sobre os processos estudados. É o conceito de Laboratório Aberto, cabendo aos alunos a proposição dos experimentos, de forma criativa e inovadora, para a resolução de um determinado problema ou a obtenção de dados necessários ao desenvolvimento de um processo. A infraestrutura deste Laboratório foi montada com o projeto de ensino financiado pelo PADCT intitulado “Laboratório Aberto de Processos”, e a expansão do laboratório de ensino do DEQ foi financiada pela Secretaria de Ensino Superior do Ministério da Educação e Cultura (SESU/MEC).

e) Redução da carga horária global

Embora uma das premissas da terceira reforma curricular tenha sido a redução do número de créditos, houve efetivamente um aumento de 252 (3780 horas) para 264 créditos (3960 horas).

Destacam-se ainda as seguintes modificações trazidas pela terceira reforma curricular:

- Inclusão de disciplina obrigatória sobre Gestão da Produção e Qualidade,
- Inclusão de disciplina obrigatória sobre Controle Ambiental que trata, além da caracterização e controle de efluentes, da importância de se considerar o tratamento de resíduos no desenvolvimento de novos processos,
- Inclusão da disciplina Estágio Supervisionado fazendo com que o estágio em indústrias, empresas de consultoria, institutos de pesquisa ou universidades seja uma atividade curricular obrigatória,
- Ampliação das relações de disciplinas Optativas Técnicas e de Ciências Humanas e Sociais.

Pode-se notar que a terceira reforma curricular implementada em 1998 teve uma natureza inovadora propondo uma nova filosofia curricular com profundas modificações de conteúdo. Salienta-se que a criação das disciplinas de Laboratório de Fenômenos de Transporte, Operações Unitárias e de Engenharia das Reações veio consolidar o perfil fortemente experimental do Curso de Graduação em Engenharia Química da UFSCar já conhecido nacionalmente. Complementando, a proposta das disciplinas de Desenvolvimento de Processos Químicos 1 e 2 selou uma nova abordagem metodológica, diferenciando a formação dos nossos egressos.

1.5. Apresentação da Última Reforma Curricular

A última reforma curricular, a quarta do Curso de Graduação em Engenharia Química, foi elaborada pela Comissão de Reformulação Curricular aprovada na 27ª Reunião Ordinária do Conselho de Coordenação de Curso de Engenharia Química em 19/09/2002, constituída pelo Prof. Dr. Alberto Colli Badino Junior, Prof. Dr. Everaldo César da Costa Araújo, Prof. Dr. Luiz Fernando de Moura e Prof. Dr. Paulo Ignácio Fonseca de Almeida do Departamento de Engenharia Química.

Como pode ser observado no item 1.4, as grandes mudanças de caráter estrutural do currículo do Curso foram propostas, aprovadas e implementadas com sucesso na terceira reforma curricular de 1998. No entanto, após a conclusão do Curso por duas turmas que iniciaram o Curso em 1998 e em 1999, respectivamente, professores, alunos e as últimas Coordenações do Curso vêm diagnosticando alguns problemas no desenvolvimento do programa. Os principais problemas foram melhor caracterizados em reunião da Comissão de Reformulação Curricular com a Turma EQ-99, realizada em 10/12/2002 contando com expressiva participação dos alunos (cerca de 50 alunos). Nesta reunião foram colhidas apenas opiniões consensuais que acabaram por, conjuntamente com a ampla discussão na Comissão, nortear a atual proposta de “adequação curricular”.

A última proposta teve como base as Diretrizes Curriculares dos Cursos de Graduação em Engenharia (Resolução CNE/CES nº 11 de 11/03/2002), as “Normas para a Criação e Reformulação dos Cursos de Graduação/UFSCar” (Parecer CaG/CEPE nº 171/98, substituido
pela portaria GR n° 771/04, de 18 de junho de 2004) e o “Perfil Geral do Profissional a ser Formado na UFSCar” (Parecer CEPE/UFSCar n° 776/2001).

Da estrutura anterior manteve-se uma formação geral com forte base teórica, uma didática que busca incentivar o espírito crítico, o comportamento ético e a iniciativa, além de um leque de disciplinas optativas que atendam os anseios do corpo discente ou que atuem em áreas de ponta apoiadas nas linhas de pesquisa do corpo docente do Departamento de Engenharia Química. Tais preceitos conduzem a uma formação geral sólida, que permitirá ao egresso, além de atuar nos mais diversos ramos de atividades da Engenharia Química, buscar o que mais próximo esteja de suas características e interesses individuais, e se preparar para enfrentar os desafios tecnológicos atuais, demandados por uma sociedade que cada vez mais exige mudanças na eficiência e qualidade dos bens que consome, bem como utilização de tecnologias “limpas”, devido à crescente preocupação com o meio ambiente.

Dentre as principais mudanças apresentadas pela última proposta pode-se citar:

1) Diminuição do Número Total de Créditos

Uma das premissas da Comissão na atual reforma foi a de adequar uma carga horária que permita aos alunos realizar estudos dirigidos e trabalhos sob supervisão de professores, além de atividades de iniciação científica, incentivado assim uma maior autonomia dos discentes.

2) Fusão de Conteúdos Possibilitando Propostas de Novas Disciplinas
2.a) Disciplinas Oferecidas pelo Departamento de Química

Em discussões com o Departamento de Química, propôs-se a criação de uma nova disciplina denominada Eletroquímica Fundamental (4 créditos), passando a disciplina Engenharia Eletroquímica (4 créditos) a ser optativa.

2.b) Disciplinas Oferecidas pelo Departamento de Matemática

Após ampla discussão com o Departamento de Matemática, foram introduzidas modificações importantes relacionadas com a eliminação, inclusão e redistribuição de conteúdos de forma a permitir uma melhor sequência de conteúdos e disciplinas. Propôs-se a diminuição da carga horária da disciplina Cálculo Diferencial e Integral 1 de 6 créditos (5 créditos teóricos + 1 crédito prático) para 4 créditos (3 créditos teóricos + 1 crédito prático). Substituição das disciplinas Cálculo Diferencial e Séries (3 créditos teóricos + 1 crédito prático) e Equações Diferenciais e Aplicações (3 créditos teóricos + 1 crédito prático) pelas disciplinas Cálculo 2 (3
créditos teóricos + 1 crédito prático) e Séries e Equações Diferenciais (3 créditos teóricos + 1 crédito prático).

3) Melhor Encadeamento de Grupos de Disciplinas

Analisados os conteúdos a serem abordados em algumas disciplinas, propuseram-se os seguintes encadeamentos de disciplinas em semestres subsequentes:

3.1) Cálculo Diferencial e Integral 2 e Séries e Equações Diferenciais → Métodos de Matemática Aplicada → Fenômenos de Transporte 1

3.2) Balanços de Massa e Energia → Termodinâmica para Engenharia Química 1 → Termodinâmica para Engenharia Química 2 → Operações Unitárias da Indústria Química 3

3.3) Fenômenos de Transporte 1 → Fenômenos de Transporte 2 → Fenômenos de Transporte 3 e Laboratório de Fenômenos de Transporte

3.4) Projetos de Algoritmos e Programação Computacional para Engenharia Química (disciplina nova) → Cálculo Numérico → Análise e Simulação de Processos Químicos

4) Mudanças nos Períodos de Oferecimento de Disciplinas

Com o objetivo de melhorar o seqüenciamento de disciplinas ao longo do Curso e minimizar as cargas horárias dos últimos períodos, principalmente do 8º período que apresenta três disciplinas de laboratório que demandam razoável carga horária para preparação de relatórios, além de outras disciplinas com certo nível de dificuldade, foi proposta a matriz curricular apresentada no item 3.10. Além do mais, foi dada maior atenção para carga horária desse período (8º), uma vez que é nele que os alunos realizam várias viagens participando de processos seletivos para obtenção de vagas em estágio.

5) Criação da Disciplina Projetos de Algoritmos e Programação Computacional para Engenharia Química

Essa disciplina foi criada em substituição à disciplina “Projeto de Algoritmos e Programação Fortran” que era oferecida no 1º período do curso. Julgou-se mais conveniente uma disciplina de projetos de algoritmos e programação oferecida pelo Departamento de Engenharia Química, que possibilitasse aos discentes, além do aprendizado de algoritmos, o contato com diferentes linguagens de programação como Excel, Visual Basic, C++, além do Fortran com aplicações direcionadas à Engenharia Química. Além do mais, tal como citado anteriormente, a
disciplina estará encadeada com as disciplinas Cálculo Numérico e Análise e Simulação de Processos Químicos.

6) Redefinição das Disciplinas Estágio Supervisionado e Trabalho de Graduação

De acordo com o Art. 7º da Resolução CNE/CES no 11/2002, “a formação do engenheiro incluirá, como etapa integrante da graduação, estágios curriculares obrigatórios sob supervisão direta da instituição de ensino, através de relatórios técnicos e acompanhamento individualizado durante o período de realização da atividade. A carga horária mínima do estágio curricular deverá atingir 160 (cento e sessenta) horas”. Estabeleceu-se, portanto, o aumento do número de créditos da disciplina Estágio Supervisionado de 8 para 12 créditos (180 horas) com atividades a serem desenvolvidas em indústrias, empresas de consultoria, institutos de pesquisa ou universidades, acompanhadas por docentes do Departamento de Engenharia Química.

Quanto à disciplina “Trabalho de Graduação”, reserva-se a tarefa de consolidar a contribuição individual do aluno ao conhecimento sistematizado em Engenharia Química durante o período em que está concluindo o curso. Como atividade a ser avaliada, o aluno deverá realizar uma monografia final de curso a respeito de uma atividade prática ou teórica de seu interesse, orientada (supervisionada) por um docente do Departamento de Engenharia Química isoladamente ou em conjunto com um profissional indicado pelos professores responsáveis pela disciplina, no caso de atividade desenvolvida em indústria ou em laboratórios externos ao Departamento de Engenharia Química da UFSCar. A regulamentação da disciplina de Trabalho de Graduação é apresentada em item 3.6 deste Projeto Pedagógico.
7) Reconhecimento de Atividades de Ensino, Pesquisa e Extensão como Atividades Curriculares

Propôs-se o reconhecimento com atribuição de créditos a constar no histórico escolar do aluno, de atividades complementares como monitoria, iniciação científica, participações no Programa de Educação Tutorial (PET) e Empresa Junior e atividades de extensão, além do estágio não obrigatório desenvolvido pelos alunos ao longo do curso.

2. Aspectos Legislativos da Profissão e Atuação Profissional

O exercício da Profissão de Químico no Brasil foi regulamentado pelo Decreto Lei Nº 24.693, de 12 de julho de 1934, que no seu Artigo 1º determina:

“Art. 1º - No território da República, só poderão exercer a profissão de químico os que possuírem diploma de químico industrial agrícola, químico industrial, ou engenheiro químico, concedido por escola superior oficial ou oficializada e registrado no Ministério do Trabalho, Indústria e Comércio”.

Observa-se, portanto, que segundo a lei 24.693 os engenheiros químicos são reconhecidos como profissionais da área química.

O perfil dos profissionais da área química foi regulamentado conforme Decreto Lei Nº 85.877, de 07 de abril de 1981, que estabelece normas para execução da Lei nº 2.800, de 18 de junho de 1956, sobre o exercício da profissão de químico.

O exercício da profissão de químico, em qualquer de suas modalidades, compreende um elenco de 16 atividades listadas a seguir:
01. Direção, supervisão, programação, coordenação, orientação e responsabilidade técnica no âmbito das atribuições respectivas;
02. Assistência, assessoria, consultoria, elaboração de orçamentos, divulgação e comercialização, no âmbito das atribuições respectivas;
03. Vistoria, perícia, avaliação, arbitramento e serviços técnicos; elaboração de pareceres, laudos e atestados, no âmbito das atribuições respectivas;
04. Exercício do magistério, respeitada a legislação específica;
05. Desempenho de cargos e funções técnicas no âmbito das atribuições respectivas;
06. Ensaios e pesquisas em geral. Pesquisa e desenvolvimento de métodos e produtos;
07. Análise química e físico-química, químico-biológica, bromatológica, toxicológica e legal, padronização e controle de qualidade;
08. Produção, tratamentos prévios e complementares de produtos e resíduos;
09. Operação e manutenção de equipamentos e instalações, execução de trabalhos técnicos;
10. Condução e controle de operações e processos industriais, de trabalhos técnicos, reparos e manutenção;
11. Pesquisa e desenvolvimento de operações e processos industriais;
12. Estudo, elaboração e execução de projetos de processamento;
13. Estudo de viabilidade técnica e técnico-econômica no âmbito das atribuições respectivas;
14. Estudo, planejamento, projeto e especificações de equipamentos e instalações industriais;
15. Execução, fiscalização de montagem e instalação de equipamento;
16. Condução de equipe de instalação, montagem, reparo e manutenção.

Os currículos de natureza química distinguem-se em:

Química: compreendendo os conhecimentos de química de caráter profissional.

Química Tecnológica: compreendendo os conhecimentos de química de caráter profissional e de tecnologia, abrangendo processos e operações da indústria química e correlatas.

Engenharia Química: compreendendo os conhecimentos de química de caráter profissional e de tecnologia, abrangendo processos e operações, planejamento e projeto de equipamentos e instalações da indústria química e correlatas.

Ressalta-se que, dentre os vários profissionais da área química, segundo a legislação vigente, apenas aos engenheiros químicos compete o desenvolvimento de todas as 16 atividades listadas.

O exercício da profissão de Engenheiro, e do Engenheiro Químico em particular, é também regulamentada pela lei n° 5.194 de 24 de dezembro de 1966. As atribuições profissionais estão definidas no art. 7° e as atividades previstas para o exercício profissional, para efeito de fiscalização, estão regulamentadas pela resolução 218 do CONFEA de 29 de junho de 1973. No caso do Engenheiro Químico as atividades se aplicam no âmbito da indústria química e petroquímica, da indústria de alimentos, de produtos químicos ou se relativas ao tratamento de águas ou de rejeitos industriais, em quaisquer instalações industriais.

As atividades designadas para o exercício profissional da engenharia são listadas a seguir:

1. Supervisão, coordenação e orientação técnica;
2. Estudo, planejamento, projeto e especificação;
3. Estudo de viabilidade técnico-econômica;
4. Assistência, assessoria e consultoria;
2.1. Diretrizes Curriculares

O documento não define carga horária mínima para os cursos de engenharia. É proposto um núcleo de conteúdos básicos que deve ser atendido por todos os cursos de engenharia, independente da modalidade. Quanto aos conteúdos profissionalizantes e específicos, em cada projeto pedagógico, de acordo com a modalidade e o perfil do curso, orienta-se escolher uma lista desses conteúdos, dentro dos conjuntos sugeridos, de forma a atender a formação pretendida para o egresso e ao perfil do curso.

Além de toda a orientação para construção do projeto pedagógico dos cursos de engenharia, as Diretrizes Curriculares definem as necessidades de inclusão de um Trabalho de Conclusão de Curso e atividades de Estágio Supervisionado com no mínimo 160 horas de duração, como atividades curriculares constantes nos projetos pedagógicos dos cursos.
2.2. Definição do Perfil do Profissional a ser Formado

A definição do perfil do profissional a ser formado pelo Curso de Engenharia Química da UFSCar baseou-se na Resolução CNE/CES no 11/2002 pois em seu Art. 3º determina que “o Curso de Graduação em Engenharia tem como perfil do formando egresso/profissional o engenheiro, com formação generalista, humanista, crítica e reflexiva, capacitado a absorver e desenvolver novas tecnologias, estimulando a sua atuação crítica e criativa na identificação e resolução de problemas, considerando seus aspectos políticos, econômicos, sociais, ambientais e culturais, com visão ética e humanística, em atendimento às demandas da sociedade”.

Ainda, a atual proposta buscou consonância com o conteúdo do documento Perfil do Profissional a ser formado na UFSCar (Parecer CEPE N.º 776/2001), que define um profissional capaz de:
- aprender de forma autônoma e contínua,
- atuar inter/multi/transdisciplinarmente,
- pautar-se na ética e na solidariedade enquanto ser humano, cidadão e profissional,
- gerenciar e incluir-se em processos participativos de organização pública ou privada,
- empreender formas diversificadas de atuação profissional,
- buscar maturidade, sensibilidade e equilíbrio ao agir profissionalmente,
- produzir e divulgar novos conhecimentos, tecnologias, serviços e produtos
- comprometer-se com a preservação da biodiversidade no ambiente natural e construído, com sustentabilidade e melhoria da qualidade de vida.

Com base nesses documentos e na história de desenvolvimento do curso de graduação, propõe-se que:

O egresso do Curso de Engenharia Química da UFSCar deverá ser um engenheiro com sólida formação técnico-científica e profissional que esteja capacitado a desenvolver, aprimorar e difundir desde os conhecimentos básicos da engenharia química, incluindo a produção e a utilização de métodos computacionais avançados aplicados, passando por serviços, produtos e processos relativos à indústria química, à petroquímica, à de alimentos e correlatas até novas tecnologias em áreas como a biotecnologia, materiais compostos e de proteção à vida humana e ao meio ambiente; que esteja capacitado a julgar e a tomar decisões, avaliando o impacto potencial ou real de suas ações, com base em critérios de rigor técnico-científico e humanitários baseados em referenciais éticos e
legais; que esteja habilitado a participar, coordenar ou liderar equipes de trabalho e a comunicar-se com as pessoas do grupo ou de fora dele, de forma adequada à situação de trabalho; que esteja preparado para acompanhar o avanço da ciência e da tecnologia em relação à área e a desenvolver ações que aperfeiçoem as formas de atuação do Engenheiro Químico.

2.3. Grupos de Conhecimentos Fundamentais à Formação do Profissional de Engenharia Química e Definição dos Conteúdos

Com base na definição do perfil do profissional a ser formado, define-se como grupos de conhecimentos fundamentais à formação desse profissional as seguintes:

1. Química;
2. Matemática;
3. Física;
4. Ciências da Computação;
5. Ciência e Tecnologia dos Materiais;
6. Engenharia;
7. Biologia;
8. Ciências Humanas e Sociais;
9. Administração e Economia;

A definição dos conteúdos correspondentes a cada área de conhecimento teve como base as “Diretrizes Curriculares Nacionais dos Cursos de Graduação em Engenharia”. Nos tópicos listados constam os conteúdos programáticos que deverão ser desenvolvidos durante o desenvolvimento das disciplinas e das atividades curriculares de modo a possibilitar ao longo do curso que o profissional desenvolva as competências, habilidades, atitudes e valores fundamentais apresentadas no item 2.3.

De acordo com o Artigo 6º da Resolução CNE/CES no 11/2002: “Todo o curso de Engenharia, independente de sua modalidade, deve possuir em seu currículo um núcleo de conteúdos básicos, um núcleo de conteúdos profissionalizantes e um núcleo de conteúdos específicos que caracterizem a modalidade”.

O núcleo de conteúdos básicos versa sobre os tópicos que seguem:
I. Metodologia Científica e Tecnológica

As atividades curriculares deste tópico deverão estar relacionadas com o desenvolvimento de habilidades para a abordagem de problemas, criação de procedimentos e preparação de relatórios.

II. Comunicação e Expressão

Aprimoramento do conhecimento da Língua Portuguesa, organização e apresentação de temas nas formas oral e escrita.

III. Informática

Aprendizado de softwares relacionados com a edição de textos, tratamentos de dados por planilha e construção de gráficos. Ainda este conteúdo deve incluir o contato com linguagens de programação e pacotes computacionais mais utilizados em engenharia.

IV. Expressão Gráfica

Dimensionamento, relações entre grandezas e perspectiva. Tais assuntos deverão ser abordados na forma manual e com auxílio de computador.

V. Matemática

Dentro do conteúdo deve constar como assuntos ou matérias: a álgebra, a geometria e os cálculos diferencial e integral.

VI. Física

Mecânica, leis de conservação, eletricidade e magnetismo.

VII. Fenômenos de Transporte

Mecânica dos Fluidos, transferência de calor e transferência de massa.

VIII. Mecânica dos Sólidos

Equilíbrio e dinâmica dos corpos rígidos.

IX. Eletricidade Aplicada

Circuitos lógicos discretos e analógicos, circuitos magnéticos, motores e instalações elétricas.

X. Química

Estrutura atômica e molecular, soluções e reações químicas e equilíbrio químico.

XI. Ciência e Tecnologia dos Materiais

Estrutura e propriedades dos materiais.

XII. Administração

Processos de produção industrial, noções de planejamento e controle da produção.
XIII. Economia
 Noções de macro e microeconomia.

XIV. Ciências do Ambiente
 Poluição, geração e processamento de resíduos, desenvolvimento sustentável e preocupação com o meio ambiente.

XV. Humanidades, Ciências Sociais e Cidadania
 Formação humana, gerencial e cidadã com consciência social.

O núcleo de conteúdos profissionalizantes tem a composição relacionada a seguir:
I. Algoritmos e Estruturas de Dados;
II. Bioquímica;
III. Ciência dos Materiais;
IV. Circuitos Elétricos;
V. Circuitos Lógicos;
VI. Controle de Sistemas Dinâmicos;
VII. Conversão de Energia;
VIII. Engenharia do Produto;
IX. Segurança do Trabalho;
X. Físico-química;
XI. Gerência de Produção;
XII. Gestão Ambiental;
XIII. Instrumentação;
XIV. Materiais de Construção Mecânica;
XV. Métodos Numéricos;
XVI. Microbiologia;
XVII. Mineralogia e Tratamento de Minérios;
XVIII. Modelagem, Análise e Simulação de Sistemas;
XIX. Operações Unitárias;
XX. Processos de Fabricação;
XXI. Processos Químicos e Bioquímicos;
XXII. Qualidade;
XXIII. Química Analítica;
XXIV. Química Orgânica;
XXV. Reatores Químicos e Bioquímicos;
XXVI. Sistemas Térmicos;
XXVII. Termodinâmica Aplicada.

O núcleo de conteúdos específicos constitui extensões e aprofundamentos dos conteúdos do núcleo profissionalizante, incluindo conhecimentos científicos, tecnológicos e instrumentais necessários para a definição da modalidade de engenharia e devem garantir o desenvolvimento das competências e habilidades (Resolução CNE/CES nº 11/2002).

Dessa forma definem-se como conteúdos específicos do curso de Engenharia Química, os seguintes:

I. Balanços de Massa e Energia;
II. Análise e Simulação de Processos Químicos e Bioquímicos;
III. Desenvolvimento de Processos Químicos;
IV. Instrumentação e Controle de Processos Contínuos e em Batelada;
V. Síntese de Produtos da Indústria Química;
VI. Projeto de Processos e de Instalações Químicas;
VII. Análise, Gestão e Controle Ambiental.

2.4. Competências, Habilidades, Atitudes e Valores Fundamentais à Formação do Profissional de Engenharia Química

Entre as competências, habilidades, atitudes e valores fundamentais esperados do engenheiro químico a ser formado pela UFSCar destacam-se as capacidades de:

1- Identificar, formular e solucionar problemas relacionados ao desenvolvimento de serviços, processos e produtos relativos às indústrias químicas, petroquímicas, farmacêuticas, de alimentos e correlatas, aplicando conhecimentos científicos, tecnológicos e instrumentais, incluindo métodos computacionais avançados, buscando soluções que garantam eficiência técnica e científica, ambiental e econômica e que preservem a segurança operacional.
2- Identificar as fontes de informação relevantes para a engenharia química, inclusive as disponíveis eletrônica e remotamente, e, de forma autônoma e crítica, obter e sistematizar as informações necessárias à solução dos problemas.

3- Relacionar informações intra e entre diferentes áreas do conhecimento, desenvolvendo as capacidades de análise, síntese, generalização (indutiva e dedutiva) e o raciocínio associativo.

4- Desenvolver, sistematizar e aprimorar conhecimentos básicos, referentes tanto ao desenvolvimento científico quanto ao desenvolvimento tecnológico, necessários à solução de problemas na sua área de atuação.

5- Absorver, produzir, aprimorar, implantar, avaliar e disseminar tecnologias em áreas como as de biotecnologia, materiais compostos, proteção ao meio ambiente, entre outras.

6- Introduzir, desenvolver, avaliar, aprimorar e disseminar serviços, processos e produtos da indústria química, petroquímica, de alimentos e correlatas.

7- Participar ativamente ou supervisionar operações de pesquisa e de desenvolvimento de processos e produtos, bem como participar da supervisão e gerenciamento do processo de produção industrial conduzindo, controlando, executando trabalhos técnicos, inclusive para garantir a manutenção e reparo de equipamentos e instalações, e para implantar e garantir as boas práticas de fabricação, a observação de procedimentos padronizados e o respeito ao ambiente, nos diferentes campos de atuação.

8- Desenvolver, modificar, aplicar e avaliar processos de manuseio, tratamento prévio e complementar e de descarte de rejeitos industriais, de modo a preservar a qualidade ambiental.

9- Aplicar metodologia científica no planejamento e execução de procedimentos e técnicas durante a emissão de laudos, perícias e pareceres, relacionados ao desenvolvimento de auditoria, assessoria, consultoria na área de engenharia química.

10- Empreender estudos de viabilidade técnica e técnica-econômica, relacionados às atividades do engenheiro químico.

11- Atuar na organização e no gerenciamento industrial, procurando influenciar nos processos decisórios. Enfrentar os deveres e dilemas da profissão pautando sua conduta profissional por princípios de ética, responsabilidade social e ambiental, dignidade humana, direito à vida, justiça, respeito mútuo, participação, diálogo e solidariedade.
12- Operar com dados e formulações matemáticas e estatísticas presentes nas relações formais e causais entre fenômenos produtivos, administrativos e de controle, relacionados às indústrias químicas, petroquímicas, de alimentos e correlatas.

13- Avaliar o impacto potencial ou real dos novos conhecimentos, tecnologias, serviços e produtos resultantes de sua atividade profissional, dos pontos de vista ético, social, ambiental e econômico.

14- Aplicar e avaliar procedimentos e normas de segurança no ambiente de trabalho e durante o desenvolvimento de processos e produtos industriais e adotar procedimentos de emergência em situações de risco que o exijam.

15- Reconhecer a engenharia química como uma construção humana importante para a sociedade, compreendendo os aspectos históricos dessa construção e relacionando-a a fatos, tendências, fenômenos ou movimentos da atualidade, como base para delinear o contexto e as relações em que sua prática profissional estará inserida.

16- Inserir-se profissionalmente, de forma crítica e reflexiva, compreendendo sua posição e função na estrutura organizacional produtiva sob seu controle e gerenciamento.

17- Administrar sua própria formação contínua, mantendo atualizada a sua cultura geral, científica e tecnológica na sua área de atuação. Assumir uma postura de flexibilidade e disponibilidade para mudanças.

18- Adotar condutas compatíveis com o cumprimento das legislações reguladoras do exercício profissional e do direito à propriedade intelectual, bem como com o cumprimento da legislação ambiental e das regulamentações federais, estaduais e municipais aplicadas às empresas e às instituições.

19- Organizar, coordenar, participar de equipes de trabalho, atuando inter ou multidisciplinarmente sempre que a compreensão dos processos e fenômenos envolvidos assim o exigir.

20- Dar condições ao aluno de adquirir maturidade e de desenvolver sensibilidade para a atuação com equilíbrio na sua ação profissional.

21- Desenvolver formas de expressão e de comunicação tanto oral como visual ou textual compatíveis com o exercício profissional, inclusive nos processos de negociação e nos relacionamentos interpessoais e intergrupais.

22- Avaliar as possibilidades atuais e futuras da profissão; preparar-se para atender às exigências do mundo do trabalho em contínua transformação, com visão ética e
humanitária; vislumbrar possibilidades de aperfeiçoar e ampliar as formas de atuação profissional, visando atender às necessidades sociais.

3. Organização Curricular

A organização curricular do curso de graduação em Engenharia Química apresenta o ciclo básico que é ministrado nos dois primeiros anos e o ciclo profissionalizante ministrado nos três anos subsequentes. A seguir estão listadas todas as disciplinas e os respectivos departamentos responsáveis.

3.1. Disciplinas e Departamentos Responsáveis

As disciplinas são apresentadas separadamente em três grupos:

3.1.1. Disciplinas Obrigatórias

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Créd.</th>
<th>Depto</th>
</tr>
</thead>
<tbody>
<tr>
<td>03080-5</td>
<td>Eletrotécnica</td>
<td>04</td>
<td>DEMa</td>
</tr>
<tr>
<td>03086-4</td>
<td>Mecânica dos Sólidos Elementar</td>
<td>02</td>
<td>DEMa</td>
</tr>
<tr>
<td>03502-5</td>
<td>Materiais para a Indústria Química</td>
<td>04</td>
<td>DEMa</td>
</tr>
<tr>
<td>06203-0</td>
<td>Português</td>
<td>02</td>
<td>DL</td>
</tr>
<tr>
<td>07013-0</td>
<td>Química 1 - Geral</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07014-9</td>
<td>Química 2 - Geral</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07018-1</td>
<td>Química Experimental Geral</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07103-0</td>
<td>Química Inorgânica</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07208-7</td>
<td>Química Orgânica</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07404-7</td>
<td>Química Analítica Experimental</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07406-3</td>
<td>Química Analítica Geral</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07618-0</td>
<td>Físico-Química Experimental</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>07638-4</td>
<td>Eletroquímica Fundamental</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>08111-6</td>
<td>Geometria Analítica</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>08302-0</td>
<td>Cálculo Numérico</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>08311-9</td>
<td>Métodos de Matemática Aplicada</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>08910-9</td>
<td>Cálculo 1</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>08920-6</td>
<td>Cálculo 2</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>08930-3</td>
<td>Cálculo 3</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>08940-0</td>
<td>Séries e Equações Diferenciais</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>09110-3</td>
<td>Física Experimental A</td>
<td>04</td>
<td>DF</td>
</tr>
<tr>
<td>09111-1</td>
<td>Física Experimental B</td>
<td>04</td>
<td>DF</td>
</tr>
<tr>
<td>09901-5</td>
<td>Física 1</td>
<td>04</td>
<td>DF</td>
</tr>
<tr>
<td>09903-1</td>
<td>Física 3</td>
<td>04</td>
<td>DF</td>
</tr>
<tr>
<td>Código</td>
<td>título</td>
<td>Ano</td>
<td>Tipo</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>10004-8</td>
<td>Introdução à Engenharia Química</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10005-6</td>
<td>Estágio Supervisionado</td>
<td>12</td>
<td>DEQ</td>
</tr>
<tr>
<td>10006-4</td>
<td>Trabalho de Graduação</td>
<td>08</td>
<td>DEQ</td>
</tr>
<tr>
<td>10104-4</td>
<td>Termodinâmica para Engenharia Química 1</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10105-2</td>
<td>Termodinâmica para Engenharia Química 2</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10208-3</td>
<td>Fenômenos de Transporte 1</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10209-1</td>
<td>Fenômenos de Transporte 2</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10210-5</td>
<td>Fenômenos de Transporte 3</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10211-3</td>
<td>Laboratório de Fenômenos de Transporte</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10312-8</td>
<td>Operações Unitárias da Indústria Química 1</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10313-6</td>
<td>Operações Unitárias da Indústria Química 2</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10314-4</td>
<td>Operações Unitárias da Indústria Química 3</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10315-2</td>
<td>Laboratório de Operações Unitárias da Indústria Química</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10316-0</td>
<td>Controle Ambiental</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10410-8</td>
<td>Cinética e Reatores Químicos</td>
<td>06</td>
<td>DEQ</td>
</tr>
<tr>
<td>10408-6</td>
<td>Projeto de Reatores Químicos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10511-2</td>
<td>Balanços de Massa e Energia</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10512-0</td>
<td>Análise e Simulação de Processos Químicos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10513-9</td>
<td>Controle de Processos 1</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10514-7</td>
<td>Controle de Processos 2</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10518-0</td>
<td>Projetos de Algoritmos e Programação Computacional para Engenharia Química</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10605-4</td>
<td>Desenvolvimento de Processos Químicos 1</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10606-2</td>
<td>Desenvolvimento de Processos Químicos 2</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10607-0</td>
<td>Síntese e Otimização de Processos Químicos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10608-9</td>
<td>Projeto de Processos Químicos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10609-7</td>
<td>Projeto de Instalações Químicas</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10706-9</td>
<td>Engenharia Bioquímica 1</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10707-7</td>
<td>Engenharia Bioquímica 2</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10708-5</td>
<td>Laboratório de Engenharia das Reações</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10910-0</td>
<td>Engenharia dos Processos Químicos Industriais</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>11130-9</td>
<td>Gestão da Produção e da Qualidade</td>
<td>04</td>
<td>DEP</td>
</tr>
<tr>
<td>11204-6</td>
<td>Organização Industrial</td>
<td>04</td>
<td>DEP</td>
</tr>
<tr>
<td>11302-6</td>
<td>Engenharia Econômica</td>
<td>04</td>
<td>DEP</td>
</tr>
<tr>
<td>12003-0</td>
<td>Mecânica Aplicada 1</td>
<td>02</td>
<td>DECiV</td>
</tr>
<tr>
<td>12005-7</td>
<td>Desenho Técnico</td>
<td>04</td>
<td>DECiV</td>
</tr>
<tr>
<td>15006-1</td>
<td>Introdução ao Planejamento e Análise Estatística de Experimentos</td>
<td>04</td>
<td>DEEs</td>
</tr>
<tr>
<td>37008-8</td>
<td>Sociologia Industrial e do Trabalho</td>
<td>04</td>
<td>DS</td>
</tr>
<tr>
<td>16400-3</td>
<td>Economia Geral</td>
<td>04</td>
<td>DCSO</td>
</tr>
</tbody>
</table>
3.1.2. Disciplinas Optativas Técnicas

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Créd.</th>
<th>Depto</th>
</tr>
</thead>
<tbody>
<tr>
<td>03035-0</td>
<td>Mineralogia e Tratamento de Minérios</td>
<td>04</td>
<td>DEMa</td>
</tr>
<tr>
<td>07623-6</td>
<td>Engenharia Eletroquímica</td>
<td>04</td>
<td>DQ</td>
</tr>
<tr>
<td>08208-2</td>
<td>Equações Diferenciais Ordinárias</td>
<td>04</td>
<td>DM</td>
</tr>
<tr>
<td>09682-2</td>
<td>A Metrologia e a Avaliação de Conformidade</td>
<td>04</td>
<td>DF</td>
</tr>
<tr>
<td>10007-2</td>
<td>Introdução à Tecnologia de Biocombustíveis</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10008-0</td>
<td>Metodologia de Pesquisa Científica</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10009-9</td>
<td>Resolução de Problemas da Engenharia Química</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10010-2</td>
<td>Análise e Controle de Qualidade de Biocombustíveis</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10053-6</td>
<td>Convênio Optativa Técnica A</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10054-4</td>
<td>Convênio Optativa Técnica B</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10055-2</td>
<td>Convênio Optativa Técnica C</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10056-0</td>
<td>Convênio Optativa Técnica D</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10107-9</td>
<td>Termodinâmica de Combustíveis</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10206-7</td>
<td>Sistemas Particulados</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10207-5</td>
<td>Tópicos Especiais de Sistemas Particulados</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10212-1</td>
<td>Processos de Separação em Meios Porosos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10214-8</td>
<td>Introdução à Dinâmica dos Fluidos Computacional</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10309-8</td>
<td>Filtração de Gases</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10307-1</td>
<td>Operações Unitárias da Indústria Química 4</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10318-7</td>
<td>Cristalização Industrial</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10409-4</td>
<td>Tópicos em Reatores Químicos Heterogêneos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10406-0</td>
<td>Introdução à Catálise Heterogênea</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10515-5</td>
<td>Controle de Bioprocessos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10516-3</td>
<td>Métodos de Otimização Aplicados à Engenharia Química</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10517-1</td>
<td>Identificação de Processos Químicos</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10520-1</td>
<td>Segurança Industrial e Análise de Risco</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10611-9</td>
<td>Aproveitamento de Resíduos e Co-Produtos das Cadeias de Biodiesel e etanol</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10612-7</td>
<td>Produção de Biocombustíveis via Alcoolquímica</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10613-5</td>
<td>Produção de Biocombustíveis via Rotas Bioquímicas</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10703-4</td>
<td>Introdução ao Tratamento Biológico de Águas Residuárias Industriais</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10705-0</td>
<td>Tópicos em Biotecnologia</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10711-5</td>
<td>Introdução ao Tratamento Anaeróbio de Águas Residuárias</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>11109-0</td>
<td>Garantia e Controle de Qualidade</td>
<td>04</td>
<td>DEP</td>
</tr>
<tr>
<td>33017-5</td>
<td>Microbiologia Aplicada à Área Tecnológica</td>
<td>04</td>
<td>DMP</td>
</tr>
</tbody>
</table>
3.1.3. Disciplinas Optativas de Ciências Humanas e Sociais

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Créd.</th>
<th>Depto</th>
</tr>
</thead>
<tbody>
<tr>
<td>10050-1</td>
<td>Convênio Optativa Humanas A</td>
<td>04</td>
<td>DEQ</td>
</tr>
<tr>
<td>10051-0</td>
<td>Convênio Optativa Humanas B</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>10052-8</td>
<td>Convênio Optativa Humanas C</td>
<td>02</td>
<td>DEQ</td>
</tr>
<tr>
<td>16130-6</td>
<td>Sociedade e Meio Ambiente</td>
<td>04</td>
<td>DCSo</td>
</tr>
<tr>
<td>16207-8</td>
<td>História das Revoluções Modernas</td>
<td>04</td>
<td>DCSo</td>
</tr>
<tr>
<td>18002-5</td>
<td>Filosofia da Ciência</td>
<td>04</td>
<td>DFMC</td>
</tr>
<tr>
<td>18004-1</td>
<td>Introdução à Filosofia</td>
<td>04</td>
<td>DFMC</td>
</tr>
<tr>
<td>20007-7</td>
<td>Introdução à Psicologia</td>
<td>04</td>
<td>DPSi</td>
</tr>
<tr>
<td>20100-6</td>
<td>Introdução à Língua Brasileira de Sinais (LIBRAS)</td>
<td>02</td>
<td>DPSi</td>
</tr>
</tbody>
</table>

3.2. Articulação entre Disciplinas e Atividades Curriculares

Encadeamentos de Disciplinas

Quanto à Articulação entre Disciplinas, tal como mencionado no item “1.5. Apresentação da Última Reforma Curricular”, dentre as principais mudanças apresentadas pela proposta está o melhor encadeamento de grupos de disciplinas. Para tanto se propôs os seguintes encadeamentos de disciplinas em semestres subsequentes:

1) Cálculo Diferencial e Integral 2 e Séries e Equações Diferenciais → Métodos de Matemática Aplicada → Fenômenos de Transporte 1.
2) Balanços de Massa e Energia → Termodinâmica para Engenharia Química 1 → Termodinâmica para Engenharia Química 2 → Operações Unitárias da Indústria Química 3.
3) Fenômenos de Transporte 1 → Fenômenos de Transporte 2 → Fenômenos de Transporte 3 e Laboratório de Fenômenos de Transporte.
4) Projetos de Algoritmos e Programação Computacional para Engenharia Química (disciplina nova) → Cálculo Numérico → Análise e Simulação de Processos Químicos.

Disciplinas Aglutinadoras e Consolidadoras

A estrutura curricular clássica de ensino de engenharia química tem sido a divisão das disciplinas em dois grandes ciclos: o básico, ministrado nos dois primeiros anos de curso e o profissionalizante, ministrado nos três anos subsequentes. Este último ainda se divide nas
disciplinas de fundamentos (basicamente Fenômenos de Transporte, Termodinâmica e Resistência dos Materiais) nas disciplinas aplicadas (Operações Unitárias, Cálculo de Reatores e Processos Químicos Industriais) e nas disciplinas de formação complementar (Organização Industrial, Ciências dos Materiais, etc.). Essa estrutura funcionou sem grandes modificações durante praticamente todo o século XX embora padecesse de alguns problemas que se evidenciaram após a Reforma de Ensino de 1971:

1. Sua estrutura demasiadamente estratificada provoca uma “estanqueidade” das disciplinas dando a impressão ao aluno que determinados conceitos pertencem à disciplina e não ao conhecimento geral que o profissional formado deve ter.
2. Cria uma falsa hierarquia entre as disciplinas do ciclo básico e do profissionalizante.
3. Conceitos fundamentais vistos em semestres iniciais não são eficientemente assimilados ao longo do curso por não serem repetidos.

Em 1998, a Coordenação de Curso de Engenharia Química da UFSCar promoveu uma reformulação curricular, criando dois novos conceitos: as disciplinas aglutinadoras e as disciplinas consolidadoras. O primeiro grupo tem a função de aplicar de uma única vez os conceitos vistos em uma área do conhecimento. No caso da UFSCar essas áreas são Fenômenos de Transporte, Operações Unitárias e Reatores Químicos e Bioquímicos. O aluno vê os conceitos em três ou mais disciplinas teóricas semestrais e os “agluta” em disciplinas de práticas experimentais. No modelo antigo, a prática era vista dentro das disciplinas modulares ocorrendo dissociações de conteúdos entre os três Fenômenos de Transporte e entre Reatores Químicos e Bioquímicos como se os conteúdos fossem estanques e não relacionados.

As disciplinas consolidadoras fazem a vinculação das áreas: são basicamente disciplinas envolvendo projeto, pesquisa e desenvolvimento de processos químicos: Trabalho de Graduação, Estágio Supervisionado, Desenvolvimento de Processos Químicos, Projeto de Processos e Projeto de Instalações e são oferecidas nos dois últimos anos do curso. Nelas, os conhecimentos que foram vistos de forma sistematizada dentro de cada área, são revistos de forma interdisciplinar e o aluno é estimulado a tomar a iniciativa de retomar os conceitos que deve utilizar e a forma de utilizá-los.
Interposição dos Núcleos Básicos e Profissionalizantes

Alteração importante também implantada na reforma curricular de 1998 foi a permeação de disciplinas do básico no ciclo profissionalizante e vice-versa. A disciplina Introdução a Engenharia Química foi implantada no primeiro ano do curso fazendo com que o aluno tivesse contato com sua futura profissão já no ingresso. Algumas disciplinas do básico como Engenharia Eletroquímica e Físico-Química Experimental, ministradas pelo Departamento de Química, foram realocadas em semestres mais próximos das disciplinas profissionalizantes, usuárias dos conceitos ministrados nas primeiras. Isso correigiu a ideia de que disciplinas conceituais básicas não são importantes, frequente entre os alunos ao não verem aplicação imediata para conceitos ministrados.

A presente proposta aproveita o esforço de síntese realizado principalmente pelos departamentos de Matemática e Química na redefinição de suas disciplinas básicas para os cursos de Engenharia e sintetiza os conceitos fundamentais necessários à formação do Engenheiro Químico, reduzindo a carga em sala de aula e incentivando as atividades extraclasse. A última reformulação, entretanto, conserva o mesmo espírito da reformulação de 1998 e visa seu aprimoramento.

O resultado foi a redução do número total de horas de 4020 (3780 em sala de aula) para 3960 (3660 em sala de aula), de 268 para 264 créditos, observando-se ainda que a disciplina Estágio Supervisionado, que corresponde a atividades extraclasse, teve aumento de 120 para 180 horas, de 8 para 12 créditos, para atender à Resolução CNE/CES nº 11/2002.

Articulação entre Atividades Curriculares

Quanto à Articulação entre Atividades Curriculares, as Atividades Curriculares de Integração Ensino, Pesquisa e Extensão (ACIEPEs) pela sua própria natureza estabelecem tais relações, podendo englobar e articular atividades de Iniciação Científica e Atividades Desenvolvidas em Empresa Junior, entre outras atividades de pesquisa e extensão. Logo, deve-se estimular o oferecimento de ACIEPEs por docentes do Departamento de Engenharia Química e a participação dos alunos do Curso, de forma que outras atividades acadêmicas sejam oficializadas e reconhecidas pela instituição, contabilizadas para o Departamento de Engenharia Química e creditadas aos discentes.
As disciplinas convênio optativas

Na atualização do Projeto Pedagógico foram criadas e incluídas no conjunto de disciplinas optativas técnicas, as disciplinas Convênio Optativas Técnicas, e no conjunto de disciplinas Optativas de Ciências Humanas e Sociais, as disciplinas Convênio Optativas Humanas. A grande força motriz para a criação das disciplinas convênio é o incentivo à mobilidade estudantil com a possibilidade de integralização de créditos optativos.

A mobilidade estudantil oferece ao aluno a possibilidade de uma experiência em outro ambiente e cultura, e permite o melhor domínio de línguas estrangeiras e o acesso a formações mais específicas e/ou aprofundadas do que as existentes na sua instituição de origem. Por outro lado, a estrutura curricular e de reconhecimentos de créditos no Brasil é bastante rígida e estática, dificultando o aproveitamento das atividades acadêmicas realizadas pelos estudantes em outras instituições. Visando resolver um dos entraves de validação das disciplinas cursadas nos Programas de Mobilidade Acadêmica como, por exemplo, o da ANDIFES, foram introduzidas nesta atualização as Disciplinas Convênios no Projeto Pedagógico do curso de Bacharelado em Engenharia Química.

A dificuldade de se validar as atividades curriculares/disciplinas cursadas em outras instituições de ensino superior se vincula à exigência de haver uma disciplina equivalente na UFSCar para o reconhecimento destas. A validação das atividades curriculares/disciplinas obrigatórias é realizada de modo mais rápido; no entanto, o processo de validação das atividades curriculares/disciplinas optativas era mais complexo devido à possibilidade dos alunos escolherem as mais interessantes de uma área de formação. Assim, a criação de disciplinas convênio propicia a validação, até um dado limite, de atividades curriculares/disciplinas optativas cursadas em outras instituições, bem como são computadas para a integralização curricular.

Com a criação destas pretende-se incentivar os estudantes a participarem de algum tipo de Mobilidade Acadêmica e/ou cursar atividades curriculares/disciplinas como aluno especial ou regular, nos casos dos programas oficiais de mobilidade em outras instituições.

A participação em programas de mobilidade acadêmica auxilia o aluno, futuro profissional, a enfrentar o desconhecido mediante a vivência de novas culturas, bem como fomenta a análise e reflexão sobre a sociedade. As disciplinas convênio também proporcionam aos alunos a incorporação de conhecimento mais específico nas áreas de interesse, bem como a possibilidade de participação em projeto de pesquisa que não são oferecidos pela UFSCar.
A seguir são listadas as disciplinas que foram criadas para validar os créditos em disciplinas optativas técnicas (item 3.1.2 - Disciplinas Optativas Técnicas) e os créditos em disciplinas optativas de ciências humanas e sociais (item 3.1.3 – Disciplinas Optativas de Ciências Humanas e Sociais). As disciplinas criadas foram:

- Disciplina Convênio Optativa Técnica A (4 créditos)
- Disciplina Convênio Optativa Técnica B (4 créditos)
- Disciplina Convênio Optativa Técnica C (2 créditos)
- Disciplina Convênio Optativa Técnica D (2 créditos)
- Disciplina Convênio Optativa Humanas A (4 créditos)
- Disciplina Convênio Optativa Humanas B (2 créditos)
- Disciplina Convênio Optativa Humanas C (2 créditos)

3.2.1. Regulamento das Disciplinas Convênio Optativas

As disciplinas convênio optativas possuem ementa livre e são utilizadas para a validação de disciplinas/atividades curriculares cursadas em instituições conveniadas à UFSCar.

Em concordância com a portaria GR nº 1272/12 de 06 de fevereiro de 2012 que estabelece normas para a adequação curricular para todos os cursos de graduação da UFSCar, para que uma dada disciplina cursada em outra instituição de ensino possa ser considerada para integralização curricular no curso de Engenharia Química, é necessário que satisfaça as seguintes condições:

- Ter sido cursada em instituição que disponha de convênio de mobilidade estudantil com a UFSCar;
- Ter carga horária igual ou superior à disciplina convênio correspondente;
- Ser aprovado previamente pela Coordenação de Curso, que considerará se os demais critérios foram satisfeitos e indicará, ou não, a consonância com a formação delineada para o Bacharel em Engenharia Química.

A disciplina convênio optativa poderá ser utilizada de duas formas:

1) Para o reconhecimento das disciplinas cursadas em instituições conveniadas estrangeiras ou nacionais, durante afastamento do estudante da universidade de origem. Neste caso o processo de reconhecimento é feito posteriormente à conclusão do programa de mobilidade e se dará por meio da análise da Coordenação de Curso e encaminhada à Pro-Reitoria de Graduação por meio de ofício.
2) Para reconhecimento de disciplinas cursadas em instituições nacionais concomitantemente ao semestre regular na UFSCar. Neste caso, para o reconhecimento o estudante deverá:

a) Procurar a Coordenação de Curso previamente à inscrição na(s) disciplina(s);

b) Obter a aprovação do seu plano de estudos pela Coordenação de Curso, que indicará a(s) disciplina(s) convênio correspondentes à(s) disciplina(s) da instituição conveniada;

c) Realizar a inscrição, simultaneamente, na(s) disciplina(s) convênio indicada(s) pela Coordenação de Curso e na(s) disciplina(s) desejada(s) na instituição conveniada;

d) Apresentar documentação que comprove a inscrição na disciplina na instituição conveniada.

Para integralização dos créditos o estudante deverá entregar na Coordenação do Curso, em prazo pré-estabelecido, um certificado ou outro documento oficial da instituição conveniada para verificação do nome, ementa e carga horária da disciplina cursada, assim como a avaliação do seu desempenho (frequência às aulas, nota obtida, etc).

As disciplina/atividades curriculares realizadas em outra instituição, não admitem a Avaliação Complementar prevista na Portaria GR/UFSCar nº 522/06.

Casos especiais ou omissos nesse Projeto Pedagógico deverão ser analisados e resolvidos pela Coordenação de Curso.

3.3. Atividades Curriculares Complementares

De acordo com o parágrafo 2º, Art. 5º, da Resolução CNE/CES no 11/2002: “Deverão também ser estimuladas atividades complementares, tais como trabalhos de iniciação científica, projetos multidisciplinares, visitas técnicas, trabalhos em equipe, desenvolvimento de protótipos, monitorias, participação em empresa júnior e outras atividades empreendedoras”.

As Atividades Complementares foram regulamentadas pela Portaria GR/UFSCar nº 461/06, de 07 de agosto de 2006, a qual descreve:

“Art. 1º - As Atividades Complementares são todas e quaisquer atividades de caráter acadêmico, científico e cultural realizadas pelo estudante ao longo de seu curso de graduação, e
incluem o exercicio de atividades de enriquecimento científico, profissional e cultural, o
desenvolvimento de valores e hábitos de colaboração e de trabalho em equipe, propiciando a
inserção no debate contemporâneo mais amplo.

§ 2° - Nos projetos pedagógicos dos cursos de graduação as Atividades Complementares farão
parte integrante do currículo e serão valorizadas e incentivadas de acordo com as respectivas
diretrizes curriculares.

§ 3° - Os projetos pedagógicos devem prever a carga horária a ser cumprida na condição de
Atividades Complementares, bem como sua obrigatoriedade ou não para a integralização
curricular, obedecidas as condições impostas por legislação específica.

§ 4° - Os projetos pedagógicos devem conter, a título de sugestão, uma relação das principais
atividades complementares, de acordo com os objetivos do curso, indicando a documentação
necessária para a comprovação e reconhecimento da atividade, a carga horária máxima por
período e a carga horária máxima total da atividade a ser reconhecida durante todo o curso,
estabelecida de modo a favorecer a diversidade de atividades e sua distribuição adequada ao
longo do curso.

Art. 2° - A atividade atualmente designada “Atividade Curricular de Integração entre Ensino
Pesquisa e Extensão (ACIEPE)” passará a ser considerada Atividade Complementar nos termos
e para os fins desta Resolução.

Art. 4° - Compete às coordenações de curso gerenciar o cômputo das Atividades
Complementares executadas pelos estudantes do respectivo curso de acordo com as disposições
do Projeto Pedagógico.

§ 3° - Compete ao coordenador do curso ou a docente do curso especificamente designado para
esse fim pelo Conselho de Coordenação avaliar e decidir sobre a aceitação de cada Atividade
Complementar comprovada pelo estudante, assim como pela atribuição de carga horária.”

Propõe-se, portanto, além do conjunto de disciplinas, a inclusão de atividades curriculares
no currículo do curso. Trata-se de um conjunto de atividades eletivas que, uma vez formalizadas,
serão reconhecidas, creditadas e constarão no histórico escolar do aluno. Na sequência são
apresentadas as atividades curriculares com os respectivos números de créditos propostos:
<table>
<thead>
<tr>
<th>Atividade Curricular</th>
<th>Créditos/ Horas</th>
<th>Caráter</th>
<th>Tipo de Comprovante</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIEPE</td>
<td>04/60</td>
<td>Semestral</td>
<td>Aprovação na disciplina</td>
</tr>
<tr>
<td>Monitoria</td>
<td>02/30</td>
<td>Semestral</td>
<td>Relatório ou documento do centro ou instituição</td>
</tr>
<tr>
<td>Programa de Educação Tutorial</td>
<td>04/60</td>
<td>Anual</td>
<td>Relatório e/ou declaração do professor tutor</td>
</tr>
<tr>
<td>Atividade em Empresa Junior</td>
<td>04/60</td>
<td>Anual</td>
<td>Relatório e/ou declaração do professor tutor</td>
</tr>
<tr>
<td>Iniciação Científica</td>
<td>08/120</td>
<td>Anual</td>
<td>Relatório e/ou documento da comissão de IC e/ou declaração do professor orientador</td>
</tr>
<tr>
<td>Projeto de Extensão</td>
<td>02/30</td>
<td>Semestral</td>
<td>Relatório ou documento PROEX ou certificado</td>
</tr>
<tr>
<td>Estágio não obrigatório</td>
<td>04/60</td>
<td>Semestral</td>
<td>Contrato de estágio</td>
</tr>
</tbody>
</table>

As monitorias serão reconhecidas como atividades curriculares até o número de duas ao longo do curso. É uma atividade semestral que terá carga horária de 2 créditos cada. As Atividades Curriculares de Integração Ensino, Pesquisa e Extensão (ACIEPE) já se encontram regulamentadas na UFSCar e oferecidas como disciplinas eletivas de 4 créditos pelos departamentos. A participação em Programa de Educação Tutorial (PET) será reconhecida como atividade curricular e terá carga horária de 4 créditos para cada ano de participação. As Atividades em Empresa Junior serão reconhecidas como atividades curriculares desde que tutoradas por docente(s) e devidamente comprovadas por Relatório de Atividades assinado pelo(s) docente(s) responsável(is). Esta atividade terá carga horária de 4 créditos para cada ano de participação e serão permitidas até o número de duas ao longo do curso. Quanto às atividades de Iniciação Científica, serão reconhecidas as seguintes como atividades curriculares desde que estejam vinculadas ao Programa Unificado de Iniciação Científica (PUIC) (parecer nº 830 - CEPE). A atividade curricular de Iniciação Científica terá carga horária de 8 créditos para cada ano de participação. Quanto às atividades de estágio não-obrigatório serão reconhecidos 4
créditos em atividades curriculares no semestre e para a participação em projetos de extensão será reconhecido 2 créditos em atividades curriculares.

3.4. Temáticas Educação Ambiental, Direitos Humanos e História e Cultura Afro-Brasileira e Indígena

As Temáticas Educação Ambiental, Direitos Humanos e História e Cultura Afro-Brasileira e Indígena já foram incorporadas no âmbito dos cursos de graduação da UFSCar quando da elaboração do Plano de Desenvolvimento Institucional (PDI) da UFSCar, aprovado conforme o Parecer ConsUni nº 337/2003, de 08 de novembro de 2003 e do Perfil do Profissional a ser Formado na UFSCar, criado pelo Parecer CEPE/UFSCar nº 776/2001, de 30 de março de 2001. Estes dois documentos definem, respectivamente, os compromissos fundamentais da UFSCar, expresso em seus princípios e em suas diretrizes gerais e específicas, e as competências a serem adquiridas pelos alunos da Universidade, bem como as diretrizes, consideradas essenciais, orientadoras do trabalho dos docentes responsáveis pelo processo de formação dos mesmos. Portanto, para demonstrar a incorporação destas temáticas no âmbito dos cursos de graduação da UFSCar destacamos as seguintes diretrizes constantes do PDI:

“Desenvolver e apoiar ações que ampliem as oportunidades de acesso e permanência dos estudantes na Universidade e contribuam com o enfrentamento da exclusão social; Promover a ambientalização dos espaços coletivos de convivência; e Garantir plenas condições de acessibilidade nos campi a pessoas portadoras de necessidades especiais; Promover processos de sustentabilidade ambiental; Promover a ambientalização das atividades universitárias, incorporando a temática ambiental nas atividades acadêmicas e administrativas, com ênfase na capacitação profissional e na formação acadêmica.”

E, as seguintes competências constantes no Perfil do Profissional a ser Formado na UFSCar:

“comprometer-se com a preservação da biodiversidade no ambiente natural e construído, com sustentabilidade e melhoria da qualidade de vida; pautar-se na ética e na solidariedade enquanto ser humano, cidadão e profissional; respeitar as diferenças culturais, políticas e religiosas.”
Essas diretrizes e competências destacadas são desenvolvidas na Universidade por meio da realização de uma grande variedade de atividades de ensino, pesquisa e extensão. Essas atividades permitem, aos estudantes de todos os cursos de graduação, a construção de um processo formativo pelo qual perpassam as questões étnico-raciais, bem como as temáticas ambientais e de direitos humanos.

No âmbito do curso de Bacharelado em Engenharia Química essas diretrizes e competências são atendidas, principalmente, pelo objetivo de "formar um profissional considerando seus aspectos humanos, econômicos, sociais e ambientais, com visão ética e humanista em atendimento às demandas da sociedade."

A organização curricular do curso possibilita que as temáticas - Educação Ambiental, Direitos Humanos e História e Cultura Afro-Brasileira e Indígena, possam ser tratadas, de modo transversal ou em conteúdo específico, no âmbito de alguns componentes curriculares obrigatórios e/ou optativos de área de formação, bem como em componentes curriculares eletivos.

A questão ambiental perpassa a disciplina obrigatória de Controle Ambiental, assim como as disciplinas optativas envolvendo aspectos ambientais como Filtração de Gases, Introdução ao Tratamento Biológico de Águas Residuárias Industriais, Introdução ao Tratamento Anaeróbio de Águas Residuárias e Sociedade e Meio Ambiente, além das disciplinas optativas envolvendo a temática dos biocombustíveis.

A temática Direitos Humanos é tratada intrinsecamente na disciplina Sociologia Industrial e do Trabalho e na disciplina optativa Sociedade e Meio Ambiente. Entre as contribuições para tal temática, destaca-se a visão dada por estas disciplinas sobre a conjuntura social do mundo do trabalho. Este assunto aborda como as pessoas são diferentes entre si e como podem contribuir para o desenho organizacional das empresas. Assim, nenhum(a) trabalhador(a) pode ser considerado(a) inapto(a) para discutir e refletir sobre as atividades que desenvolve, pelo contrário, deve-se sempre reconhecer a inteligência no trabalho, o que independe de sua formação acadêmica, classe social, raça e costumes. Desta forma, o curso busca passar para os(as) discentes uma visão holística do ser humano e como este deve ser o foco de suas intervenções, respeitando seus limites, necessidades e anseios. Tal visão, antropocentrada, coloca em evidência a temática dos Direitos Humanos, em especial, no mundo do trabalho, mas com reflexos para a vida cotidiana.
A temática História e Cultura Afro-Brasileira e Indígena também é tratada em disciplinas que podem ser cursadas com caráter eletivo pelos(as) estudantes desse curso, tais como: Escola e Diversidade: relações étnico-raciais, Sociologia das Diferenças e Sociologia das Relações Raciais.

Por sua vez, também se estimula os(as) discentes realizarem atividades curriculares complementares, sendo a Atividade Curricular de Integração Ensino, Pesquisa e Extensão (ACIEPE) uma das opções de atividade complementar oferecida pela Universidade, na qual se encontram as seguintes temáticas:

- Aprendendo pelo contato com a natureza;
- Direitos Humanos pelo Cinema;
- Educação Ambiental: ambientalizando e politizando a atividade sócio-educativa;
- Educação Ambiental em Meio Rural;
- Integração: Sociedade, desenvolvimento e ambiente;
- Programa educacional para formação de consultores, empreendedores e líderes para o Desenvolvimento Sustentável
- Relações Étnico-Raciais e Educação;
- Usina de cidadania e direitos.

Nesta perspectiva, portanto, o currículo do curso de Bacharelado em Engenharia Química contempla o estabelecido na Resolução CNE/CP nº 2, de 15 de junho de 2012 que institui as Diretrizes Curriculares Nacionais para a Educação Ambiental; na Resolução CNE/CP nº 01/2012, de 30 de maio de 2012 que institui as Diretrizes Nacionais para a Educação em Direitos Humanos e na Resolução CNE/CP nº 01 de 17/2004 de junho de 2004 que institui as Diretrizes Curriculares Nacionais para a Educação das Relações Étnico-Raciais e para o Ensino de História e Cultura Afro-Brasileira e Africana e Indígena.

3.5. Estágio Curricular

No Curso de Bacharelado em Engenharia Química o Estágio Curricular é estruturado conforme o estabelecido na Lei nº 11.788/2008, de 25 de setembro de 2008 da Presidência da República que regulamenta os estágios e pela Portaria GR nº282/09, de 14 de setembro de 2009, que dispõe sobre a realização de estágios de estudantes dos Cursos de Graduação da
Universidade Federal de São Carlos na qual estabelece que “*os estágios realizados pelos estudantes de graduação matriculados na UFSCar serão curriculares, podendo ser obrigatórios ou não obrigatórios, conforme definido no projeto pedagógico de cada curso*”.

Em relação ao estágio curricular obrigatório, o Projeto Pedagógico do curso Bacharelado em Engenharia Química estabelece a necessidade do cumprimento do estágio supervisionado para que o estudante possa realizar a integralização curricular. Esta obrigatoriedade atende o estabelecido no Art. 7º da Resolução CNE/CES nº. 11/2002, de 11 de março de 2002 que institui as Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia o qual define que:

“A formação do engenheiro incluirá, como etapa integrante da graduação, estágios curriculares obrigatórios sob supervisão direta da instituição de ensino, através de relatórios técnicos e acompanhamento individualizado durante o período de realização da atividade. A carga horária mínima do estágio curricular deverá atingir 160 (cento e sessenta) horas. (Cf. 4)”

Obedecendo, portanto, o estabelecido nas peças normativas previstas para o Curso de Engenharia Química, o Estágio Supervisionado (caracterizado como estágio obrigatório) está previsto para o nono semestre do curso, assim o aluno deverá integralizar no mínimo 180 horas de estágio e cursar 12 créditos na disciplina Estágio Supervisionado. Trata-se, portanto, de uma obrigação e requisito para integralização curricular.

O aluno também poderá realizar Estágio Curricular não-obrigatório, que está definido como atividade curricular complementar do curso de Engenharia Química. Este tipo de estágio requer necessariamente uma remuneração por parte da Concedente (empresa, instituto, entre outros). Também são caracterizadas como estágio não-obrigatório as horas excedentes ao previsto no estágio obrigatório que forem cumpridas no semestre letivo seguinte à disciplina “estágio supervisionado”, desde que atendam às exigências para este tipo de estágio (como remuneração prevista em termo de compromisso).

Serão apresentados, a seguir, os objetivos e a regulamentação para os estágios curriculares a serem realizados por alunos do curso.

1. **Objetivos**

Observando o Perfil do Profissional da Engenharia Química e o previsto no Art. 1º da Lei nº 11.788/2008, ou seja, “*o Estágio Supervisionado é um ato educativo escolar supervisionado,*
desenvolvido no ambiente de trabalho, que visa à preparação para o trabalho produtivo de educandos que estejam frequentando o ensino regular em instituições de educação superior (...)”, foram definidos para o Estágio Curricular os seguintes objetivos:

- consolidar o processo de formação do profissional em engenharia química para o exercício da atividade profissional de forma integrada e autônoma;
- possibilitar e estimular as oportunidades de interação dos alunos com setores externos à universidade, como institutos de pesquisa, laboratórios e empresas que atuam nas diversas áreas da Engenharia Química;
- proporcionar oportunidades para o estreitamento dos laços entre indústria e universidade, através da formação profissional estreitando os laços de cooperação.

Além disso, o estágio curricular serve para entrada do estudante no mercado de trabalho, ampliando a empregabilidade dos profissionais formados e muitas vezes levando à oportunidade de emprego diretamente no local de estágio. Assim, os estágios curriculares devem ser preferencialmente desenvolvidos no setor industrial, principal fonte de empregos do engenheiro químico e setor que melhor aproveita sua formação, envolvendo desde indústrias de transformação até empresas de consultoria ou projeto. Alunos que tenham maiores interesses voltados à pesquisa científica ou tecnológica poderão aprimorar seus conhecimentos em institutos de pesquisa ou laboratórios, incluindo instalações presentes na própria UFSCar. De todo o modo, devem ser respeitadas as características definidas no item 3, sobre as área de atuação do estágio.

2. Caracterização

O Estágio Curricular, obrigatório e não-obrigatório, deve ser desenvolvido nas áreas de conhecimento ou atuação no âmbito da Engenharia Química mediante um Plano de Atividades, elaborado em comum acordo entre as partes envolvidas.

A inscrição na disciplina de Estágio Supervisionado deve ser preferencialmente realizada no quinto ano do Curso, momento definido na grade de disciplinas para o cumprimento da obrigatoriedade do estágio.

O Estágio Curricular poderá ser desenvolvido durante as férias escolares ou durante o período letivo. A realização de estágio no período das férias poderá se enquadrar como estágio
obrigatório, desde que este período anteceda imediatamente a inscrição na disciplina Estágio Supervisionado.

A carga horária das atividades de estágio está limitada em trinta horas semanais e seis horas diárias (Lei nº 11.788/2008). Porém, caso não hajam aulas presenciais previstas, o estágio poderá ter jornada limitada por 40 (quarenta) horas semanais, enquadrando-se dentro do previsto no Capítulo IV, Artigo 10, parágrafo 1º da Lei no. 11.788, de 25 de setembro de 2008, que dispõe sobre estágio de estudantes. Assim, não havendo atividades acadêmicas previstas na UFSCar para períodos de recesso programados em calendário acadêmico, o aluno terá disponibilidade integral para estágio nos períodos de férias e poderá neste período realizar atividades de no máximo 8 horas diárias e limitadas à 40 horas semanais, desde que de comum acordo com a Concedente. A jornada de trabalho nas férias deverá estar prevista em termo de compromisso ou termo aditivo ao termo de compromisso vigente.

Ademais, o curso de Engenharia Química foi estruturado de modo a alternar teoria e prática no último ano, enquadrando-se dentro do previsto no Capítulo IV, Artigo 10, parágrafo 1º da Lei no. 11.788, de 25 de setembro de 2008. Os alunos possuem possibilidade de se dedicarem integralmente ao estágio durante 3 (três) dias do nono semestre letivo e 3 (três) dias no décimo semestre. Os alunos que comprovarem tal disponibilidade poderão realizar jornada de até 8 (oito) horas nos dias em que não há atividade acadêmica presencial prevista, com o limite máximo de 40 horas semanais, sem prejuízo às suas atividades acadêmicas. Em casos que comprovadamente o estudante tem mais dias sem atividades acadêmicas previstas, estes dias podem ser incluídos para estágio de 8 (oito) horas diárias, como quando o estudante obteve equivalência de disciplinas que cursou em outra instituição de ensino (mobilidade nacional ou internacional).

Cabe ao estudante demonstrar a disponibilidade de estágio durante o semestre letivo, o que pode ser feito com atestado de carga horária, deferimento final e histórico escolar completo. A jornada de atividades de estágio limitada a 40 (quarenta) horas semanais deve estar prevista em termo de compromisso ou termo aditivo ao termo de compromisso vigente.

3. Áreas de atuação para o estágio

A atuação do estagiário estará relacionada ao uso dos conhecimentos adquiridos durante o curso de Engenharia Química. Preferencialmente, as atividades de estágio estarão condicionadas à integração de diversos níveis do conhecimento adquirido ao longo do curso. Estes conhecimentos incluem atividades do profissional na área química, engenharia e áreas
afins. Ademais, também devem ser priorizadas as condições e oportunidades de aprofundamento de conhecimentos adquiridos ao longo do curso.

Em termos de definições específicas, tais quais definem os conselhos de classe associados à atuação profissional: o elenco de atividades que compõem o exercício da profissão na área química (Conselho Federal de Química) e as atividades designadas para o exercício profissional da engenharia (Conselho Federal de Engenharia e Agronomia) são guias gerais para definição das atividades de interesse a serem desenvolvidas em estágio (obrigatório ou não-obrigatório).

Conforme já foi destacado, os estágios curriculares devem ser preferencialmente desenvolvidos no setor industrial, entre indústrias de transformação, empresas de consultoria ou projeto industrial.

4. **Condições para realização de Estágio Curricular**

A realização de estágio de estudante matriculado em curso oferecido pela UFSCar para sua plena regularidade deverá atender aos seguintes requisitos:

- celebração de termo de compromisso entre o(a) estudante, a parte Concedente do estágio e a UFSCar;
- elaboração de plano de atividades a serem desenvolvidas no estágio, compatíveis com o projeto pedagógico do curso, o horário e o calendário escolar, de modo a contribuir para a efetiva formação profissional do(a) estudante;
- acompanhamento do estágio por professor responsável (orientador) e por supervisor da parte Concedente (por exemplo, em uma empresa).

5. **Formalização do Termo de Compromisso de Estágio**

Deverá ser celebrado Termo de Compromisso de Estágio entre o estudante, a parte Concedente do estágio e a UFSCar e deverá estabelecer: a) o plano de atividades a serem realizadas, que figurará em anexo ao respectivo termo de compromisso; b) as condições de realização do estágio, em especial, a duração e a jornada de atividades, respeitada a legislação vigente; c) as obrigações do Estagiário, da Concedente e da UFSCar; d) o valor da bolsa ou outra forma de contraprestação devida ao Estagiário, assim como auxílio-transporte, a cargo da
Concedente, quando for o caso; e) o direito do(a) estagiário(a) ao recesso das atividades na forma da legislação vigente e f) deverá segurar o(a) estagiário(a) contra acidentes pessoais.

6. Partes envolvidas e definição de suas funções

a) Coordenação de estágio

A Coordenação de Estágio será realizada por um professor coordenador e o vice-coordenador, ambos do quadro de professores do curso de Engenharia Química.

A coordenação possui as seguintes atribuições:
• coordenar a tramitação de todos os instrumentos jurídicos, tais como: termos de compromisso, requerimentos, declarações, cartas de apresentação, ou outros documentos necessários para que o estágio seja oficializado, bem como a guarda destes por até três anos depois do término do estágio;
• apreciar e decidir sobre propostas de estágios apresentadas pelos alunos, cabendo a possibilidade de consulta ao professor da disciplina de Estágio Supervisionado sobre plano de atividades, quando o estágio for obrigatório.

Quando o estágio for não-obrigatório, também cabe à coordenação:
• auxiliar o estagiário na escolha do professor orientador que, preferencialmente, será indicado pelo próprio estagiário e que concorde com o plano de atividades e com a orientação;
• coordenar todas as atividades relativas ao cumprimento dos programas do estágio, assim como coordenar as atividades de avaliações do mesmo.

b) Professor(a) da disciplina de Estágio Supervisionado

Os professores das disciplinas de Estágio Supervisionado são aqueles professores do quadro de docentes do curso de Engenharia Química aos quais foram atribuídas as turmas da disciplina de Estágio Supervisionado.

Os professores da disciplina possuem as seguintes atribuições, que são sempre associadas aos estágios obrigatórios:
• realizar reunião geral com alunos de sua turma para orientações quanto às atividades e disciplina;
• exigir aos alunos matriculados na sua turma, no início da disciplina de Estágio Supervisionado, que apresentem o termo de compromisso de estágio ou qualquer outro documento necessário de posse do aluno (como termo aditivo), de modo a garantir a existência do trâmite jurídico essencial;
• auxiliar o aluno na escolha do professor orientador que, preferencialmente, será indicado pelo próprio estagiário e que concorde com o plano de atividades e com a orientação;
• coordenar todas as atividades para o andamento da disciplina de Estágio Supervisionado;
• coordenar todas as atividades relativas ao cumprimento dos programas do estágio, assim como coordenar as atividades de avaliações do mesmo durante a disciplina;
• receber o relatório de avaliação do supervisor de estágio (em caráter confidencial), intervir nos pontos que forem necessários para o bom andamento das atividades de estágio, também informando o orientador sobre questões necessárias.

c) Professor(a) orientador da instituição
O professor orientador do estágio será um docente do quadro do DEQ-UFSCar que acompanhará a execução do estágio e possuirá as seguintes atribuições:
• orientar o estagiário quanto aos aspectos técnicos, científicos e éticos;
• encaminhar avaliações, relatórios ou qualquer outro documento relevante à coordenação de estágio;
• propor melhorias e ações ao aluno para que os resultados sejam os melhores possíveis, sempre com foco na formação do estudante.

d) Supervisor do estágio
O supervisor deverá ser um profissional que atue no local no qual o(a) aluno(a) desenvolverá suas atividades de estágio e terá as seguintes atribuições:
• garantir o acompanhamento contínuo e sistemático do estagiário, desenvolvendo a sua orientação e assessoramento dentro do local de estágio;
• informar à Coordenação de Estágio ou orientador na instituição as ocorrências relativas ao estagiário, buscando assim estabelecer um intercâmbio permanente entre a Universidade e a Empresa;
• apresentar um relatório de avaliação do(a) estagiário(a) ao orientador na instituição de ensino, em caráter confidencial, quando solicitado.
e) **Estagiário**

O estagiário, durante o desenvolvimento das atividades de Estágio, terá as seguintes obrigações:

- apresentar documentos exigidos pela UFSCar e pela concedente;
- seguir as determinações do Termo de Compromisso de Estágio;
- cumprir integralmente o horário estabelecido pela concedente, observando assiduidade e pontualidade;
- manter sigilo sobre conteúdo de documentos e de informações confidenciais referentes ao local de estágio;
- acatar orientações e decisões do supervisor local de estágio, quanto às normas internas da concedente, destaca-se o respeito à normas de segurança e uso de Equipamentos de Proteção Individual (EPI), quando necessários;
- efetuar registro de sua frequência no estágio;
- elaborar e entregar relatório das atividades de estágio e outros documentos nas datas estabelecidas;
- respeitar as orientações e sugestões do supervisor local de estágio
- manter contato com o professor orientador de estágio, sempre que julgar necessário.

Ao término da disciplina de Estágio Supervisionado será agendada uma apresentação com todos os alunos matriculados, os orientadores na instituição e os professores da disciplina de Estágio Supervisionado, para que cada aluno possa apresentar os objetivos, a área de desenvolvimento do seu estágio, as atividades desenvolvidas, os benefícios alcançados e as principais dificuldades encontradas. Ao final da apresentação deverá ser entregue ao professor da disciplina um relatório com a descrição de todos os tópicos da apresentação.

3.6. Trabalho de Graduação

O Trabalho de Graduação (TG) é um componente curricular obrigatório para o curso de Bacharelado em Engenharia Química, designado na matriz curricular pela atividade curricular/disciplina (10.006-4) Trabalho de Graduação. Este é constituído por um trabalho acadêmico de produção orientada, que sintetiza e integra conhecimentos, competências e habilidades adquiridos durante o curso.
O TG deverá propiciar aos estudantes de graduação a oportunidade de reflexão, análise e crítica, articulando a teoria e a prática, resguardando o nível adequado de autonomia intelectual dos estudantes. A realização dessa atividade deverá versar sobre qualquer área do conhecimento da Engenharia Química como o desenvolvimento de um projeto de engenharia ou a caracterização de um problema de caráter tecnológico, juntamente com análise da viabilidade de possíveis soluções, sem deixar de considerar os aspectos econômicos, os impactos sociais, ambientais e outros que sejam considerados necessários.

Essa atividade deverá ser desenvolvida mediante a orientação de um docente do Departamento de Engenharia Química da UFSCar, com titulação de doutor e reconhecida experiência profissional ou em conjunto com um profissional indicado pelos professores responsáveis pela disciplina, no caso de atividade desenvolvida em indústria ou em laboratórios externos ao Departamento de Engenharia Química da UFSCar. É permitida a co-orientação com a participação de profissionais externos à UFSCar.

O produto final do TG será apresentado na forma de uma monografia com uma exposição oral perante uma banca examinadora. No texto escrito serão avaliadas a redação, a qualidade do trabalho realizado e as contribuições para a formação do estudante. Na apresentação oral será avaliada a exposição sobre o trabalho realizado e a arguição pelos examinadores.

Segue o regulamento geral desta atividade:

1) Organização da Disciplina

 No curso de Bacharelado em Engenharia Química estão previstos 8 (quatro) créditos (120 horas) para a realização do TG, no 10º semestre de curso.

2) Acompanhamento do Desenvolvimento da Monografia

 O responsável principal pelo acompanhamento do estudante no desenvolvimento do trabalho de monografia é o professor-orientador. O professor-coordenador da disciplina irá fazer o acompanhamento do desenvolvimento da pesquisa por meio da monografia final e da apresentação do aluno perante uma banca examinadora, entregue e marcada em datas previamente estabelecidas no início do semestre.

3) Cronograma da Disciplina de TG
No início de cada semestre será divulgado o cronograma das atividades e os procedimentos gerais para o desenvolvimento da monografia (determinação do problema, organização da pesquisa, execução de pesquisa, redação do texto). Professores-orientadores e estudantes deverão atestar ciência sobre este cronograma e regras gerais.

4) Entrega do Resumo

O estudante deverá entregar ao professor-coordenador da disciplina em prazo pré-estabelecido um resumo do trabalho que será desenvolvido ao longo do semestre. Este resumo deve ser assinado pelo estudante e respectivo professor-orientador.

5) Da Apresentação

6) Da Entrega dos Exemplares de Defesa

Uma cópia impressa e/ou eletrônica da monografia deve ser entregue ao professor-coordenador da disciplina, na data estabelecida previamente no cronograma. O objetivo é verificar se esta se encontra dentro dos padrões preestabelecidos e se todos os requisitos formais foram cumpridos. É de responsabilidade do professor-coordenador da disciplina entregar os exemplares para avaliação pela banca examinadora com pelo menos uma semana de antecedência da data de defesa.

7) Avaliação

A avaliação será feita através da defesa da monografia e da avaliação do trabalho escrito.

8) Monografia
O estudante deverá entregar o texto da monografia com o tema que foi desenvolvido ao longo do semestre. A monografia deverá ser elaborada considerando-se a estrutura e os critérios técnicos estabelecidos pelas normas do modelo proposto pelo professor da disciplina.

O(a) aluno(a) deve elaborar a monografia de acordo com esse regulamento levando em consideração as orientações do seu professor-orientador.

9) Defesa
A nota da defesa (ND) é composta pela média simples das notas finais atribuídas pelos examinadores. Sugere-se que o examinador leve em conta os seguintes quesitos:

- Redação;
- Apresentação oral;
- Conteúdo desenvolvido no trabalho;
- Arguição.

10) Avaliação Complementar
Estudantes com média igual ou superior a 5 e menor que 6 poderão apresentar e defender a monografia novamente até no máximo o trigésimo quinto dia letivo do semestre subsequente, de acordo com a Portaria GR/UFSCar no 522/06.

11) Disposições Gerais
Casos especiais ou omissos nestas regras gerais deverão ser analisados e resolvidos entre os orientadores e o coordenador da disciplina.

3.7. Tratamento Metodológico
O tratamento metodológico dado ao conhecimento durante o desenvolvimento do curso será implementado por procedimentos que visem:
1) o estabelecimento de uma sólida base nos fundamentos da engenharia através da formação em matemática, física, química e bioquímica.
2) a aquisição do conhecimento através de aulas teóricas, complementadas por disciplinas experimentais aglutinadoras dos conhecimentos desenvolvidos nas disciplinas teóricas de
Fenômenos de Transporte, Operações Unitárias da Indústria Química e de Engenharia das Reações Químicas e Bioquímicas.

3) a superação da dicotomia ciclo básico/ciclo profissional pela interposição de disciplinas dos núcleos profissionalizante e básico.

4) o desenvolvimento das habilidades de analisar, sintetizar, desenvolver e projetar processos, produtos e metodologias relativas à Indústria de Processos Químicos e Bioquímicos, com o auxílio de modernas técnicas computacionais.

5) a capacitação no desenvolvimento de processos químicos, enfrentando “problemas em aberto” relacionados a questões da Indústria Química. Para tal, há o oferecimento das disciplinas de Desenvolvimento de Processos Químicos 1 e 2 nos 7º e 8º períodos do curso, ministradas por 6 professores para turmas de 30 alunos, sendo formados grupos de 5 a 6 alunos tutorados por um docente, que participam do estudo circunstanciado da pesquisa e do desenvolvimento de uma unidade que compõe o processo químico estudado. Os grupos constituídos aleatoriamente projetam, implementam, simulam e analisam os resultados em unidades experimentais construídas e/ou operadas por eles próprios com o auxílio de técnicos e docentes do Departamento de Engenharia Química.

Ressalta-se que a metodologia desenvolvida para a implementação do laboratório aberto de desenvolvimento de processos químicos permite ao aluno desenvolver a iniciativa de trabalho, estabelecer atitudes adequadas para o trabalho em grupo, desenvolver habilidades para relatar resultados e apresentá-los em seminários, sendo os apresentadores escolhidos por sorteio, confrontar resultados experimentais de laboratório com os de processos industriais que são visitados durante o decorrer da disciplina e discutir com o professor tutor a ética do trabalho em grupo desenvolvido ao longo dos dois semestres de oferecimento das disciplinas.

6) o aprimoramento da capacidade de projetar nas disciplinas Projeto de Processos Químicos e Projeto de Instalações Químicas, oferecidas no 9º e 10º períodos, onde os alunos aprendem a projetar processos e instalações industriais, consolidando sua formação em engenharia. Também nesses períodos os alunos realizam o Estágio Supervisionado, preferencialmente na área industrial, concretizando sua inserção na profissão escolhida. Alunos com o perfil e interesse voltados para a pesquisa científica e/ou tecnológica, têm a oportunidade de se aprimorar nos laboratórios de pesquisa da UFSCar ou do Departamento de Engenharia Química em particular, e melhor se preparar para a pós-graduação durante esse período final de sua formação.
Completoando a formação, a disciplina “Trabalho de Graduação” estimula o aluno a apresentar sua contribuição para a sistematização do conhecimento adquirido ao longo da sua formação.

3.8. Princípios de Avaliação

Aspecto relevante e vinculado à organização curricular pautada pelo desenvolvimento de competências se refere à concepção de avaliação adotada, pois o Parágrafo 1° do Artigo 8° da Resolução CNE/CES nº 11/2002 define que “as avaliações dos alunos deverão basear-se nas competências, habilidades e conteúdos curriculares desenvolvidos tendo como referência as Diretrizes Curriculares.”

A importância dos métodos de avaliação é confirmada por vários estudos, pois as atividades de avaliação, incluindo as certificativas, ocupam uma grande parte do tempo e esforço de alunos e docentes; bem como tais atividades também influenciam a motivação, o auto-conceito, os hábitos de estudo, estilos de aprendizagem dos alunos e desenvolvimento de competências e habilidades.

Nesta perspectiva, se torna oportuno observar a evolução contínua do conhecimento, consistindo algo em constante transformação, constituído e alimentado por uma constante interação do sujeito com o objeto em estudo. É essa interação que precisa ser analisada e trabalhada, pois são as relações estabelecidas neste processo que desencadearão a construção do conhecimento.

A avaliação contínua propicia o acompanhamento da evolução do aluno, bem como através desta se torna possível diagnosticar o conhecimento prévio dos alunos, refletir sobre os resultados obtidos e construir estratégias de ensino individuais ou coletivas de superação das dificuldades apresentadas. Tal método figura como diretriz da concepção de avaliação adotada e regulamentada pela da Portaria GR/UFSCar no 522/06, de 10 de Novembro de 2006, ou seja:

“Art. 2o A avaliação deve permean todo o processo educativo, desempenhando diferentes funções, como, entre outras, as de diagnosticar o conhecimento prévio dos estudantes, os seus interesses e necessidades; detectar dificuldades (...) na aprendizagem no momento em que ocorrem, abrindo a possibilidade de estabelecimento de planos imediatos de superação; oferecer uma visão do desempenho individual, em relação ao do grupo, ou do desempenho de um grupo como um todo.”
Art. 3o A avaliação deve oferecer subsídios à análise do processo ensino-aprendizagem aos corpos docente e discente, nos seguintes termos:

I - Para os professores, a avaliação deve permitir recolher indícios dos avanços, dificuldades ou entraves no processo ensino-aprendizagem, nos âmbitos coletivo e individual do corpo discente, tendo em vista a consecução dos objetivos específicos da disciplina/atividade curricular, permitindo-lhes a tomada de decisões quanto à seqüência e natureza das atividades didáticas, no sentido de incluir, de fato, os estudantes no processo ensino-aprendizagem, bem como de contribuir para que a interpretação dos resultados atinja gradualmente níveis de complexidade maiores e a sua incorporação na dinâmica do processo ensino-aprendizagem assuma papel seja cada vez mais relevante.”

Por outra parte, se torna necessário proporcionar aos alunos vários momentos de avaliação, multiplicando as suas oportunidades de aprendizagem e diversificando os métodos utilizados, pois, assim, se permite que os alunos apliquem os conhecimentos que vão adquirindo, exercitem e controlem eles próprios as aprendizagens e o desenvolvimento das competências, recebendo feedback frequente sobre as dificuldades e progressos alcançados.

A utilização de diferentes métodos e instrumentos de avaliação é disposta pelos Artigos 5º, 6º e 7º da Portaria GR/UFSCar nº 522/2006:

“Art. 5º A avaliação do processo ensino-aprendizagem, no âmbito das disciplinas/atividades curriculares deve considerar a complexidade deste, decorrente dos inúmeros fatores nele intervenientes, tais como as particularidades dos indivíduos, a dinâmica individual/coletivo, a multiplicidade de conhecimentos a serem abordados e a diversidade de aspectos da realidade social a serem considerados para atingir o perfil definido para os egressos dos cursos.

Art. 6º A multiplicidade de aspectos envolvidos exige avaliação nas abordagens quantitativa e qualitativa com suas possibilidades e limites específicos, entendidas como complementares e utilizadas simultaneamente ou não.

Art. 7º Os instrumentos de avaliação podem ser os mais variados, adequando-se à legislação e às normas vigentes, às especificidades das disciplinas/atividades, às funções atribuídas à avaliação nos diferentes momentos do processo ensino-aprendizagem.”
A escolha dos métodos e instrumentos de avaliação depende de vários fatores: das finalidades e objetivos pretendidos, ou seja, do objeto de avaliação, da área disciplinar e nível de escolaridade dos alunos a que se aplicam, do tipo de atividade em que o desempenho se manifesta, do contexto e dos próprios avaliadores. Por outra parte, o uso de testes não é desconsiderado, no entanto, a aplicação destes requer a compreensão em relação ao modo pelo qual este são construídos, na medida que os mesmos melhoram a capacidade de atenção do aluno, ativam o processamento dos conteúdos e ajudam a consolidar as aprendizagens. Utilizados regularmente com objetivos formativos, os testes podem funcionar como orientadores da aprendizagem, chamando a atenção do aluno para o que é considerado essencial. Devem, contudo, ser utilizados com moderação e complementados por outros métodos de avaliação.

Outro aspecto relevante da Portaria GR/UFSCar nº 522/06 se refere ao processo de avaliação complementar que substituiu o Regime Especial de Recuperação (RER), regulamentado pela Portaria GR/UFSCar nº 1.019/95, ou seja, o mencionado processo prevê:

“Art. 14 O processo de avaliação complementar deverá ser realizado em período subseqüente ao término do período regular de oferecimento da disciplina. São pressupostos para a realização da avaliação complementar de recuperação que:

I - o estudante tenha obtido na disciplina/atividade curricular, no período letivo regular, nota final igual ou superior a cinco e frequência igual ou superior a setenta e cinco por cento;

II - sejam estabelecidos prazos para que essa avaliação se inicie e se complete em consonância com o conjunto da sistemática de avaliação proposta para a disciplina/atividade curricular;

III - o resultado dessa avaliação complementar seja utilizado na determinação da nova nota final do estudante, na disciplina/atividade curricular, segundo os critérios previstos na sistemática de avaliação, a qual definirá a sua aprovação ou não, conforme estabelecido no artigo 12.

Art. 15 A realização da avaliação complementar a que se refere o artigo 14 pode prolongar-se até o trigésimo quinto dia letivo do período letivo subseqüente, não devendo incluir atividades em horários coincidentes com outras disciplinas/atividades curriculares realizadas pelo estudante.”
Desta forma, os diversos instrumentos de avaliação devem ser propostos e aplicados pelos docentes, tais como: a resolução de problemas, avaliação coletiva das atividades acadêmico-científicas, elaboração de projetos, relatórios, apresentação de seminários individuais e coletivos, publicação de artigos, acompanhamento das atividades de estágio pelos supervisores etc. Assim, através destes as competências podem ser avaliadas, como a capacidade de trabalhar em equipes multidisciplinares, de usar novas tecnologias, a capacidade de aprender continuamente, de conceber a prática profissional como uma das fontes de conhecimento, de perceber o impacto técnico-sócio-ambiental de suas ações.

3.9. Ementas e Objetivos Gerais das Disciplinas

Na sequência encontram-se as ementas e os objetivos gerais das disciplinas. Cabe ressaltar que a maioria das disciplinas já existe. Quanto às disciplinas novas, as respectivas ementas já foram discutidas no departamento de Engenharia Química e com os departamentos que as oferecerão.

3.9.1. Ementário das Disciplinas Obrigatórias por semestre

PRIMEIRO PERÍODO

(07.013-0) Química 1- Geral

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Levar aos alunos, que apresentam formação bastante heterogênea, a elaborarem um conjunto de conceitos muito bem relacionados entre si, que lhes permitam desenvolver raciocínio químico dedutivo. Este raciocínio deve permitir-lhes, mais tarde, prever ou justificar o comportamento de sistemas em reação e as propriedades de elementos e compostos, baseando-se num tratamento correto e atualizado dos assuntos enumerados na ementa.

Ementa: 1. Estrutura Atômica. 2. Estrutura Molecular. 3. Os Estados da Matéria e as Forças Intermoleculares.

Bibliografia
Básica:

Complementar:

(07.018-1) Química Experimental Geral

Número de Créditos: 04 (4P)

Objetivos Gerais da Disciplina: 1. Identificar, localizar e manusear os materiais de segurança do laboratório. 2. Identificar os riscos decorrentes do manuseio de reagentes químicos. 3. Identificar e manusear a vidraria e os reagentes básicos de um laboratório de química. 4. Montar sistemas simples para separar e/ou purificar sólidos e/ou líquidos; calcular o rendimento destes processos. 5. Sintetizar e caracterizar compostos orgânicos e inorgânicos. Calcular o rendimento das sínteses efetuadas. 6. Identificar metais através de medidas de grandezas físicas e de reações químicas. 7. Preparar soluções de ácidos e bases, determinar sua concentração e utilizar em análises. 8. Redigir um relatório científico, discutir e avaliar resultados experimentais.

Bibliografia

Básica:
2. ROCHA FILHO, R.C.; SILVA, R.R. Cálculos Básicos da Química. São Carlos: EdUFSCar, 2006;

Complementar:
(08.111-6) Geometria Analítica

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Introduzir linguagem básica e ferramentas (matrizes e vetores), que permitam ao aluno analisar e resolver alguns problemas geométricos, no plano e espaço euclidianos, preparando-o para aplicações mais gerais do uso do mesmo tipo de ferramentas. Mais especificamente: 1) Analisar e resolver problemas elementares que envolvem operações de matrizes e sistemas de equações lineares. 2) Analisar soluções de problemas geométricos no plano e no espaço através do uso de vetores, matrizes e sistemas. 3) Identificar configurações geométricas no plano e no espaço euclidiano a partir de suas equações, bem como deduzir equações para tais configurações. Resolver problemas que envolvem essas configurações.

Bibliografia

Básica:

Complementar:

(08.910-9) Cálculo 1

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Propiciar o aprendizado dos conceitos de limite, derivada e integral de funções de uma variável real. Propiciar a compreensão e o domínio dos conceitos e das técnicas de Cálculo Diferencial e Integral dessas funções. 1. Desenvolver a habilidade de implementação desses conceitos e técnicas em problemas nos quais eles se constituem os modelos mais adequados. Desenvolver a linguagem Matemática como forma universal de expressão da ciência.

Bibliografia

Básica:

Complementar:

(09.110-3) Física Experimental A

Número de Créditos: 04 (4P)

Objetivos Gerais da Disciplina: Treinar o aluno para desenvolver atividades em laboratório. Familiarizá-lo com instrumentos de medidas de comprimento, tempo e temperatura. Ensinar o aluno a organizar dados experimentais, a determinar e processar erros, a construir e analisar gráficos; para que possa fazer uma avaliação crítica de seus resultados. - Verificar experimentalmente leis da Física.

Bibliografia

Básica:

Complementar:

4. DUPAS, M.A. Pesquisando e Normalizando: Noções Básicas e Recomendações Úteis para a Elaboração de Trabalhos Científicos. 6ª edição, São Carlos, Editora EdUFSCar, 89 p. (Série Apontamentos), 2009.

(09.901-5) Física 1

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Introduzir os princípios básicos da Física Clássica (Mecânica), tratados de forma elementar, desenvolvendo no estudante a intuição necessária para analisar fenômenos físicos sob os pontos de vista qualitativo e quantitativo. Despertar o interesse e ressaltar a necessidade do estudo desta matéria, mesmo para não especialistas.

Bibliografia

Básica:

Complementar:

(10.004-8) Introdução a Engenharia Química

Número de Créditos: 02 (2T/)

Objetivos Gerais da Disciplina: Introduzir os aspectos principais da formação do engenheiro químico. Apresentar as atribuições e áreas de atuação dos profissionais graduados em Engenharia Química.

Ementa: 1. Engenharia Química: formação e profissão. 2. Legislação, atribuições, associações de classe. 3. O engenheiro químico e a sociedade. 4. O curso de EQ na UFSCar: infraestrutura, projeto pedagógico e vida acadêmica. 5. A informática e a engenharia química. 6. Introdução aos processos químicos. 7. Unidades e dimensões.

Bibliografia

Básica:

SEGUNDO PERÍODO

(06.203-0) Português

Número de Créditos: 0 (2T)

Bibliografia
Básica:

Complementar:

(07.103-0) Química Inorgânica

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: 1. Identificar os elementos químicos mais abundantes na crosta terrestre. 2. Identificar os elementos químicos mais abundantes através da produção mineral brasileira. 3. Descrever os métodos de obtenção mais usuais dos elementos mais abundantes e mais utilizados no Brasil. 4. Escrever e balancear as equações químicas características dos elementos de cada grupo da tabela periódica. 5. Descrever as propriedades físicas e químicas da substancias inorgânicas provenientes dos elementos descritos no objetivo 3. 6. Identificar os elementos, ions e substancias químicas que possam, de algum modo, prejudicar o meio ambiente. 7. Identificar na "natureza" substâncias inorgânicas em diferentes estados, formas e complexidades. 8. Identificar as principais aplicações das substâncias inorgânicas (item 3).

Bibliografia

Básica:
1. TSUNODA, M. Química Inorgânica – Aspectos Fundamentais e Descritivos da Química dos Elementos, versão 02 2016. Textos disponíveis para "download" no "site" da disciplina no Moodle.

Complementar:

(07.014-9) Química 2- Geral

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Ao final da disciplina, o aluno deverá ser capaz de caracterizar o que se entende por substâncias, materiais, reações químicas, estequiometria, ácidos e bases, soluções tamponantes, equilíbrio químico e propriedades coligativas. Além disso, deverá ser capaz de realizar cálculos: a) de composição percentual de substâncias e determinar fórmulas a partir da composição percentual; b) para uma amostra de uma substância ou um material envolvendo as grandezas massas, volume, quantidade de matéria e número de entidades químicas; c) estequiométricos; d) envolvendo constantes de equilíbrio e quantidades de equilíbrio e/ou iniciais; e) envolvendo o pH de soluções aquosas; f) envolvendo soluções tamponantes; g) de propriedades coligativas.

Bibliografia
Básica:

4. ROCHA FILHO, R.C.; SILVA, R.R. Cálculos Básicos da Química. São Carlos: EdUFSCar, 2006;

Complementar:

(08.920-6) Cálculo 2

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Interpretar geometricamente os conceitos de funções de duas ou mais variáveis. Desenvolver habilitades em cálculos e aplicações de derivadas e máximos e mínimos dessas funções. Desenvolver habilidades em diferenciação de funções implícitas e suas aplicações.

Bibliografia

Básica:

Complementar:

(08.940-0) Séries e Equações Diferenciais

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Desenvolver as ideias gerais de modelos matemáticos de equações diferenciais ordinárias com aplicações às ciências físicas, químicas e engenharia. Desenvolver métodos elementares de resolução das equações clássicas de 1ª e 2ª ordem. Desenvolver métodos de resolução de equações diferenciais através de séries de potências. Representar funções em séries de potências e em séries de funções trigonométricas. Desenvolver métodos de resolução de equações diferenciais através de séries de potências. Resolver equações diferenciais com uso de programas computacionais.

Bibliografia

Básica:

Complementar:

(09.111-1) Física Experimental B

Número de Créditos: 04 (4P)

Objetivos Gerais da Disciplina: Ao final da disciplina, o aluno deverá ter pleno conhecimento dos conceitos básicos, teórico-experimentais, de eletricidade, magnetismo e óptica geométrica. Conhecerá os princípios de funcionamento e dominará a utilização de instrumentos de medidas elétricas, como: osciloscópio, voltímetro, amperímetro e ohmímetro. Saberá a função de vários componentes passivos, e poderá analisar e projetar circuitos elétricos simples, estando preparado para os cursos mais avançados, como os de Eletrônica. Em óptica geométrica, verificará experimentalmente, as leis da reflexão e refração.

Bibliografia

Básica:

4. VAN VALKENBURGH, NOOGER & NEVILLE, Inc. Eletrônica Básica. 9ª edição, Rio de Janeiro, Livraria Freitas Bastos, s.d. v.2 v.3 v.4 v.5 v.6., 1976.
Complementar:

(12.003-0) Mecânica Aplicada 1

Número de Créditos: 04 (2T/2P)

Objetivos Gerais da Disciplina: 1. Desenvolver no aluno a capacidade de analisar problemas de maneira simples e lógica, aplicando para isso poucos princípios básicos. 2. Mostrar que os conceitos vistos se aplicam aos pontos materiais, aos corpos rígidos e aos sistemas de corpos rígidos, deixando clara a diferença entre forças internas e forças externas. 3. Mostrar a importância da disciplina para o entendimento de casos mais complexos que serão vistos na sequencia do curso. 4. Mostrar que os conceitos de álgebra vetorial podem ser utilizados para resolver muitos problemas, principalmente os tridimensionais, onde sua aplicação resulta em soluções mais simples e claras. 5. Mostrar que muitos dos princípios e conceitos se aplicam também a corpos e sistemas de corpos em movimento.

Bibliografia
Básica:

Complementar:

(12.005-7) Desenho Técnico

Número de Créditos: 04 (2T/2P)

Objetivos Gerais da Disciplina: Transmitir os conceitos básicos do desenho técnico entendido como meio de comunicação das engenharias. Exercitar as normas e convenções práticas no sentido de tornar a comunicação a mais perfeita e clara possível. Promover o contato do aluno com os materiais mais usados em desenho técnico. Desenho auxiliado por computador.

Bibliografia
Básica:

Complementar:

3. Normas técnicas ABNT:

 NBR 10068 – Folha de Desenho – Leiaute e Dimensões

 NBR 10582 – Conteúdo da Folha para Desenho Técnico

 NBR 8402 – Execução de Caracteres para Escrita em Desenhos Técnicos

 NBR 8196 – Emprego de Escalas em Desenho Técnico

 NBR 10126 – Cotagem em Desenho Técnico

 NBR 10067 – Princípios Gerais de Representação em Desenho Técnico – Vistas e Cortes

TERCEIRO PERÍODO

(03.080-5) Eletrotécnica

Número de Créditos: 02 (2T/2P)

Objetivos Gerais da Disciplina: Caracterizar os problemas, grandezas e fenômenos elétricos relacionados com a utilização da eletricidade. Caracterizar as máquinas elétricas e os dispositivos de manobra e proteção, relacionados com os sistemas elétricos que os engenheiros de materiais e químicos lidam em suas atividades profissionais, de modo a garantir instalações elétricas
seguras, não colocando em risco a vida das pessoas e garantindo o desempenho adequado dos equipamentos (consumo de energia, durabilidade, rendimento, etc.).

Bibliografia

Básica:

Complementar:

(07.406-3) Química Analítica Geral

Número de Créditos: 04 (4T/)

Objetivos Gerais da Disciplina: Após uma breve revisão de básicos e discussão sobre erros e tratamento de dados analíticos, pretende-se proporcionar aos alunos domínio conceitual e visão clara de aplicações sobre equilíbrio químico de ácidos e bases, de solubilidade, de óxido-redução e de complexação. Em todos os casos, os alunos deverão compreender os fundamentos envolvidos e as aplicações analíticas decorrentes considerando-se determinações de análytios em amostras reais. Serão propostos problemas analíticos que envolvam o emprego de conceitos e procedimentos.

Bibliografia

Básica:

Complementar:

(08.311-9) Métodos de Matemática Aplicada

Número de Créditos: 02 (2T/)

Objetivos Gerais da Disciplina: 1. O aluno deverá ser capaz, de, através do uso de transformada de Laplace, resolver (e interpretar) problemas de Equações Diferenciais Ordinárias com funções forçantes descontínuas ou da forma impulso. Com o uso de Séries de Fourier (tanto trigonométrica como generalizadas), o aluno deverá ser capaz de resolver (e interpretar soluções) de Equações Diferenciais Parciais da Física-Matemática relacionadas com problemas de difusão de calor e vibrações de cordas e membranas elásticas bem como problemas estacionários.

Bibliografia

Básica:

Complementar:

(08.930-3) Cálculo 3

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: 1. Generalizar os conceitos e técnicas do Cálculo Integral de funções de uma variável para funções de várias variáveis. 2. Desenvolver a aplicação desses conceitos e técnicas em problemas correlatos.

Bibliografia

Básica:

Complementar:

(09.903-1) Física 3

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Nesta disciplina serão ministrados aos estudantes os fundamentos de eletricidade e magnetismo e suas aplicações. Os estudantes terão a oportunidade de aprender as equações de Maxwell. Serão criadas condições para que os mesmos possam adquirir uma base sólida nos assuntos a serem discutidos, resolver e discutir questões e problemas ao nível do que será ministrado e de acordo com as bibliografias recomendadas.

Bibliografia
Básica:

Complementar:

(10.511-2) Balanços de Massa e Energia

Número de Créditos: 04 (4T/)

Objetivos Gerais da Disciplina: Apresentar aos alunos técnicas de realização de balanços globais de massa e energia em processos químicos, bem como situar a importância da aplicação desta metodologia no projeto, análise e otimização de processos químicos industriais. Introduzir o computador como ferramenta auxiliar na resolução de problemas.

Ementa: 1. Introdução aos cálculos em Engenharia Química. 2. Processos químicos: contínuos, descontínuos e semi-contínuos. 3. Unidades e dimensões. 4. Balanços Materiais em processos químicos estacionários e transientes. 5. Primeira Lei da Termodinâmica: balanços de energia em
processos químicos. 6. Balanços combinados de massa e energia. 7. Solução de equações de balanço macroscópico com auxílio de computador.

Bibliografia

Básica:

Complementar:

(37.008-8) Sociologia Industrial e do Trabalho

Número de Créditos: 04 (2T/2P)
Objetivos Gerais da Disciplina: 1. Oferecer aos alunos de graduação do campus da Universidade uma visão panorâmica dos principais temas abordados pela sociologia do trabalho. 2. Instrumentalizar os alunos para que eles sejam capazes de fazer reflexões, críticas sobre a conjunturaoal social do mundo do trabalho.

Bibliografia

Básica:

Complementar:

QUARTO PERÍODO

(03.086-4) Mecânica Dos Sólidos Elementar

Número de Créditos: 02 (2T/)

Objetivos Gerais da Disciplina: No final do período letivo, o aluno deverá ser capaz de (a) entender os fundamentos teóricos do comportamento mecânico dos sólidos deformáveis, (b) reconhecer as limitações das hipóteses de cálculo adotadas, (c) estruturar de maneira lógica e racional as ideias e os conceitos envolvidos nos cálculos, (d) estabelecer analogias de procedimentos de cálculo e conceitos em diferentes situações, (e) incorporar as habilidades necessárias para resolver problemas de aplicação e (f) calcular tensão e deslocamento em estruturas de barras (isostáticas) submetidas a ações simples ou combinadas.
Ementa: 1. Estudo do comportamento mecânico dos sólidos deformáveis em estruturas de barras (isostáticas) submetidas à força normal torção (seção transversal circular) e flexão (seção transversal simétrica) deduzindo as expressões de tensões e deslocamentos considerando os conceitos de tensão e esforço solicitante, as hipóteses de cálculo e a Lei de Hooke.

Bibliografia

Básica:

Editora McGraw-Hill.

Complementar:

4. SCHIEL, F. Introdução à Resistência dos Materiais. 3a ed. São Carlos, EESC, 1970.

(07.208-7) Química Orgânica

Número de Créditos: 04 (4T/)

Objetivos Gerais da Disciplina: 1. Introduzir ao aluno de Engenharia os conceitos básicos da Química Orgânica. 2. Identificar e diferenciar a reatividade de compostos orgânicos. 3. Identificar os reagentes e ou condições necessárias, bem como os mecanismos para a interconversão das seguintes funções orgânicas: a) Hidrocarbonetos; b) Alquenos acíclicos e cíclicos; c) Alquinos; d) Haletos de Alquila. e) Benzeno e derivados; f) Álcoois e Fenóis; g) Cetonas e Aldeídos; h) Ácidos Carboxílicos e seus derivados. 4. Reconhecer os compostos e suas reações em três dimensões.

Bibliografia

Básica:

Complementar:

(07.404-7) Química Analítica Experimental

Número de Créditos: 04 (4P)

Objetivos gerais da Disciplina: Proporcionar conhecimentos e práticas sobre os princípios de análise quantitativa convencional, das determinações gravimétricas e volumétricas mais frequentes, bem como das técnicas instrumentais de uso mais abrangente e de maiores potencialidades nos controles de qualidade de processos industriais.

Bibliografia

Básica:

6. VOGEL, A.I. Química Analítica Qualitativa; 5ª, Editora Mestre Jou, São Paulo, SP; 1981.

Complementar:

(10.104-4) Termodinâmica para Engenharia Química 1

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Pretende-se com esta disciplina fazer com que o aluno, além de consolidar compreensão dos princípios básicos da termodinâmica clássica, desenvolva capacidade para: - determinar propriedades termodinâmicas de substâncias puras mediante o uso de equações de estado, diagramas e tabelas. - resolver problemas em sistemas abertos e fechados orientados a aplicações práticas típicas da engenharia.

Bibliografia

Básica:

Complementar:

(10.208-3) Fenômenos de Transporte 1

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Apresentação dos conceitos básicos de transporte de quantidade de movimento e aplicação destes conceitos para análise e resolução de problemas envolvendo escoamento de fluidos, voltados para Engenharia Química.

Ementa: 1. Introdução. 2. Reologia de Fluidos. 3. Balanços globais de massa, energia e quantidade de movimento. 4. Balanços Diferenciais de massa, energia e quantidade de movimento. 5. Escoamento de Fluidos em Regime laminar e turbulento. 6. Equações de Projeto de sistemas de Escoamento.
Bibliografia

Básica:

Complementar:

(10.518-0) Projetos de Algoritmos e Programação Computacional para Engenharia Química

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: A disciplina visa preparar os alunos para utilizarem ferramentas computacionais disponíveis e necessárias para as demais disciplinas do curso e desenvolver conhecimento em estruturação algorítmica e linguagens de programação.

Ementa: 1. Introdução. 2. Planilhas Eletrônicas. 3. Algoritmos Estruturados 4. Linguagens e Estruturas de Programação e Estruturas Comuns.

Bibliografia
Básica:

Complementar:

(16.400-3) Economia Geral

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Introduzir os alunos nos conceitos básicos utilizados pelos cientistas econômicos e algumas das teorias dentro desta área de conhecimento.

Bibliografia
QUINTO PERÍODO

(08.302-0) Cálculo Numérico

Número de Créditos: 04 (3T/1p)

Objetivos Gerais da Disciplina: Apresentar técnicas numéricas computacionais para resolução de problemas nos campos das ciências e da engenharia, levando em consideração suas especificidades, modelagem e aspectos computacionais vinculados a essas técnicas.

Bibliografia

Básica:

Complementar:

(10-105-2) Termodinâmica para Engenharia Química 2

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Esta disciplina tem por objetivo consolidar o domínio, por parte dos alunos, da Termodinâmica aplicada a processos químicos, que se constitui em um dos fundamentos da Engenharia Química. As leis da Termodinâmica, juntamente com correlação
para predição de propriedades serão utilizadas na resolução de problemas em sistemas abertos e fechados, envolvendo misturas e soluções cálculo do equilíbrio de fases e químico.

Ementa: Introdução. 2. Misturas e Soluções. 3. Equilíbrio de Fases. 4. Equilíbrio Químico.

Bibliografia

Básica:

Complementar:

(10.209-1) Fenômenos de Transporte 2

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Apresentação de transferência de energia integrada aos fenômenos de transporte e voltada para aplicações em Engenharia Química.

Ementa: 1. Introdução. 2. Transferência de Calor por Condução. 3. Transferência de Calor por Convecção. 4. Radiação Térmica.

Bibliografia

Básica:

Complementar:
(10.312-8) Operações Unitárias da Indústria Química 1

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: O objetivo geral desta disciplina é a aplicação dos conceitos básicos vistos na disciplina Fenômenos de Transporte 1

Bibliografia

Básica:

Complementar:

5. SILVESTRE, P. Hidráulica Geral. Editora Livros Técnicos e Científicos, 1983.

(10.410-8) Cinética e Reatores Químicos

Número de Créditos: 06 (6T)

Objetivos Gerais da Disciplina: O estudo dos princípios de cinética química e cálculo de reatores químicos tem um papel fundamental na formação do engenheiro químico, sendo esta disciplina específica para a formação desse profissional. A disciplina cinética e reatores químicos tem como objetivo transmitir ao estudante os princípios básicos da cinética de reações em fase homogênea, reações catalíticas em fase heterogênea e cálculo de reatores isotérmicos, para sistemas reacionais homogêneo e pseudo-homogêneo.

Ementa: 1. Introdução. 2. Teoria da velocidade de reações homogênea. 3. Balanço de massa em reatores ideais e definição de grau de conversão. 4. Teoria Introdução. 5. Teoria da velocidade de reações homogêneas. 6. Balanço de massa em reatores ideais e definição de grau de conversão. 7. Teoria de adsorção física e química em superfície de catalisadores heterogêneos. 8. Teoria da velocidade de reações heterogênea. 9. Análise de dados de reatores e estimativa de parâmetros cinéticos. 10. Análise de reatores ideais com reações simples e múltiplas e projeto de reatores isotérmicos.

Bibliografia

Básica:

Complementar:

(15.006-1) Introdução ao Planejamento e Análise Estatística de Experimentos

Número de Créditos: 04 (2T/2P)

Objetivos Gerais da Disciplina: Apresentar métodos estatísticos básicos para um adequado planejamento de experimentos bem como os procedimentos para análise dos dados obtidos.

Bibliografia

Básica:

Complementar:

SEXTO PERÍODO

(07.638-4) Eletroquímica Fundamental

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Ao final da disciplina, idealmente, o aluno deverá ser capaz de:
1. Identificar eletrólitos fortes, intermediários e fracos através de valores de condutividade ou resistência para suas soluções. 2). Prever valores para parâmetros físico-químicos (*, Kps, concentrações de íons para eletrólitos fracos, etc.) a partir de valores de resistência ou condutividade eletrolítica. 3. Calcular valores de coeficientes de atividade de eletrólitos usando a equação obtida do modelo de Debye-Hückel. 4. Calcular força eletromotriz para células galvânicas. 5. Calcular parâmetros termodinâmicos a partir de medidas de potencial. 6. Calcular parâmetros relacionados com a cinética de processos de eletrodo. 7. descrever algumas aplicações de reações eletroquímicas.

Ementa: 1. Introdução à Eletroquímica (Grandezas e Unidades Usuais em Eletroquímica, células Eletroquímicas e Galvânicas, Leis da Eletrólise). 2. Eletroquímica do Equilíbrio (Atividade de Íons em Soluções, Teoria de Debye-Hückel, Equilíbrio em soluções Iônicas). 3. Células Eletroquímicas (Definição e notação, Força Eletromotriz, f.e.m. e potenciais de eletrodo, obtenção de dados termodinâmicos a partir da f.e.m.). 4. Cinética eletroquímica. 5. Aplicações de Sistemas Eletroquímicos (baterias, tratamento de resíduos, eletrodeposição, corrosão).

Bibliografia
Básica:

Complementar:

5. GENTIL, V. Corrosão. 6ª edição, LTC editora, 2011.

(10.210-5) Fenômenos de Transporte 3

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Apresentar e discutir os fenômenos de transferência de massa e as semelhanças e analogias com transferência de quantidade de movimento e de calor. Analisar os fundamentos de transferência de massa visando aplicação em operações industriais reais (que serão tratadas na disciplina Operações Unitárias da Indústria Química 3). Desenvolver nos alunos o espírito crítico para análise da fenomenologia de transferência de massa.

Ementa: 1. Introdução à Transferência de Massa. 2. Transferência de Massa por Difusão. 3. Transferência de Massa por Convecção. 4. Transferência de Massa entre Fases. 5. Correlações para o cálculo de Transferência de Massa.

Bibliografia

Básica:

Complementar:
(10.211-3) Laboratório de Fenômenos de Transporte

Número de Créditos: 04 (1T/3P)

Objetivos Gerais da Disciplina: Consolidação de conceitos teóricos relativos à área de conhecimento de Fenômenos de Transporte através da realização de experimentos didáticos que permitam a visualização de fenômenos envolvidos com identificação e cálculo de parâmetros importantes do sistema estudado.

Ementa: 1. Introdução. 2. Experimentos de Transferência de Quantidade de Movimento. 3. Experimentos de Transferência de Calor. 4. Experimentos de Transferência de Massa.

Bibliografia

Básica:
2. SISSON, L.E.; PITS, D.R. Fenômenos de Transporte, ED. Guanabara Dois S.A., 1975

Complementar:
(10.313-6) Operações Unitárias da Indústria Química 2

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Apresentar as principais operações unitárias da indústria química que envolvem transferência de calor e transferência de calor e massa. Descrição, função, operação e projeto dos equipamentos da indústria química onde estas operações são realizadas.

Ementa: Operações envolvendo Transporte de Calor. 2. Operações envolvendo Transporte de Calor e Massa.

Bibliografia

Básica:
Complementar:

(10.408-6) Projeto de Reatores Químicos

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Aprendizado da teoria e metodologia relacionadas com o projeto, análise e otimização de reatores químicos industriais. Enfocam-se durante o curso: reatores catalíticos heterogêneos, efeitos térmicos e desvios da idealidade do escoamento. Trabalhos e projetos específicos visam a desenvolver a capacidade do aluno em definir tipos de reator em função do processo em questão.

Bibliografia

Básica:

Complementar:
(10.512-0) Análise e Simulação de Processos Químicos

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Apresentar ao aluno metodologias de análise de processos químicos, capacitando-o a desenvolver modelos matemáticos, resolver as equações obtidas, em geral com o auxílio do computador, e interpretar os resultados de simulações.

Ementa: 1. Introdução. 2. Modelos Matemáticos para a Engenharia Química. 3. Técnicas Analíticas. 4. Técnicas Numéricas. 5. Laboratório de Informática.

Bibliografia

Básica:

8. FINLAYSON, B.A. Nonlinear Analysis in Chemical Engineering, McGraw Hill, New

Complementar:

(10.706-9) Engenharia Bioquímica 1

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Introduzir conceitos fundamentais de microbiologia e bioquímica. Desenvolver e entender os principais modelos cinéticos que descrevem os processos enzimáticos.

Bibliografia

Básica:

Complementar:

SÉTIMO PERÍODO

(07.618-0) Físico-Química Experimental

Número de Créditos: 04 (4P)
Objetivos Gerais da Disciplina: 1. Desenvolver a capacidade de: a) interpretar fenômenos observados em laboratório; b) elaborar modelos que permitam explicar experiências realizadas; c) abstrair de dados concretos comportamentos na forma de leis; e d) aplicar princípios gerais já aprendidos em Físico-Química teórica. 2. Atender as exigências do curriculum mínimo dos Cursos de Engenharia Química e de Produção Química.

Bibliografia

Básica:

Complementar:

(10.314-4) Operações Unitárias da Indústria Química 3

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Estudo das operações unitárias que envolvem transferência de massa. Equilíbrio de fases.

Bibliografia

Básica:

Complementar:

(10.315-2) Laboratório de Operações Unitárias da Indústria Química

Número de Créditos: 04 (1T/3P)

Objetivos Gerais da Disciplina: Consolidação de conceitos adquiridos nas disciplinas teóricas de Operações Unitárias, através da realização de experimentos com caráter aberto.

Ementa: 1. Experimentos de Operações Unitárias envolvendo transporte de quantidade de movimento. 2. Experimentos de Operações Unitárias envolvendo transferência de calor. 3. Experimentos de Operações Unitárias envolvendo transporte de massa.

Bibliografia

Básica:

Complementar:

(10.605-4) Desenvolvimento de Processos Químicos 1

Número de Créditos: 04 (2T/2P)

Objetivos Gerais da Disciplina: Estimular no aluno a capacidade de atuar como "engenheiro", no sentido de buscar soluções para o desenvolvimento de um processo químico. Estimular o trabalho em equipe e a interação entre grupos.

Bibliografia

Básica:

Complementar:

Fabricação de álcool e açúcar a partir da cana-de-açúcar:

Alcoolquímica/Sucroquímica:

7. BASTOS, V.D. Etanol, Alcoolquímica e Biorefinarias, BNDES.

8. ASSUNÇÃO, F.C.R. (Supervisor) Química Verde no Brasil 2010-2030, CGEE.

Fermentação:

Destilação:

Adsorção:

Tratamento/Aproveitamento de Efluentes:

Cristalização:

(10.707-7) Engenharia Bioquímica 2

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Introduzir os conceitos fundamentais de microbiologia industrial. Desenvolver os principais modelos cinéticos, apresentar e analisar equações de projeto de biorreatores ideais e das principais operações unitárias envolvidas nos processos microbiológicos.

Bibliografia

Básica:

Complementar:

(11.204-6) Organização Industrial

Número de Créditos: 04 (4T)

Bibliografia

Básica:

Complementar:

(11.302-6) Engenharia Econômica

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Fornecer aos alunos conceitos financeiros básicos e técnicas de Engenharia Econômica, para que possam, a partir destes conhecimentos, tomarem decisões de investimentos.

Bibliografia

Básica:

Complementar:

OITAVO PERÍODO

(10.513-9) Controle de Processos 1

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Dar uma ideia quantitativa do comportamento dinâmico dos sistemas encontrados em indústrias químicas. Alertar o aluno para as necessidades dos processos em termos de restrições no tempo (controles). Introduzir as teorias clássicas de controle automático que servem como ferramentas na análise e projeto dos controles de processos químicos. Sistematizar a análise do desempenho de sistemas de controle de plantas em operação. Apresentar as técnicas de projeto de sistemas de controle. Familiarizar o aluno na utilização de software aplicativo para simular sistemas de controle.

Ementa:

Bibliografia

Básica:

Complementar:

(10.606-2) Desenvolvimento de Processos Químicos 2

Número de Créditos: 04 (1T/3P)

Objetivos Gerais da Disciplina: Estimular no aluno a capacidade de atuar como "engenheiro", no sentido de buscar soluções para o desenvolvimento de um processo químico. Estimular o trabalho em equipe e a interação entre grupos.

Bibliografia

Básica:

Complementar:

Fabricação de álcool e açúcar a partir da cana-de-açúcar:

Alcoolquímica/Sucroquímica:

7. BASTOS, V.D. Etanol, Alcoolquímica e Biorefinarias, BNDES.
8. ASSUNÇÃO, F.C.R.(Supervisor) Química Verde no Brasil 2010-2030, CGEE.

Fermentação:

Destilação:

Adsorção:

Tratamento/Aproveitamento de Efluentes:

Crystalização:

(10.607-0) Síntese e Otimização de Processos Químicos

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Fornecer aos alunos a metodologia básica para o desenvolvimento e otimização de processos químicos.

Ementa: 1. A Engenharia do Projeto de Processos Químicos. 2. Síntese de Processos Químicos. 3. Balanço de massa e energia aplicado a Unidades de Processo Químico. 4. Otimização de
Processos Químicos. 5. Introdução ao uso de Simuladores de Processo e noções sobre o Projeto de Processos assistido por Computador.

Bibliografia

Básica:

Complementar:

(10.708-5) Laboratório de Engenharia das Reações

Número de Créditos: 04 (1T/3P)

Objetivos Gerais da Disciplina: Consolidação de conceitos teóricos relativos à área de conhecimento de engenharia de reações químicas e bioquímicas, através da realização de experimentos didáticos que permitam a visualização dos fenômenos envolvidos com identificação e cálculo dos parâmetros importantes do sistema estudado.

Ementa: 1. Cinética de reações químicas. 2. Cinética de reações bioquímicas. 3. Análise de reatores ideais e não ideais. 4. Transferência de massa em bioprocessos. 5. Etapas de separação e purificação de bioproductos.

Bibliografia

Básica:
4. LEVENSPIEL, O. Engenharia das Reações Químicas, 3a. Edição, Editora Edgard Blücher, São Paulo, 2.000

Complementar:
(11.130-9) Gestão da Produção e da Qualidade

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Capacitar os alunos na utilização de métodos e técnicas estatísticas para o controle e melhoria da qualidade de produtos e processos industriais.

Bibliografia

Básica:

Complementar:

NONO PERÍODO

(10.005-6) Estágio Supervisionado

Número de Créditos: 12 (6T/6E)

Objetivos Gerais da Disciplina: Supervisionar o estágio desenvolvido pelo aluno preferencialmente em uma empresa da área de processos químicos ou bioquímicos ou em empresas de engenharia, consultoria, etc. relacionadas ao desenvolvimento e projeto de processos e produtos, meio ambiente, automação industrial ou ainda em Instituições voltadas à pesquisa e ao desenvolvimento tecnológico da área

Ementa: 1. Apresentação dos objetivos e procedimentos adotados na disciplina. 2. Metodologia para redação de Relatório de Engenharia. 3. Acompanhamento acadêmico pelo Supervisor do Estágio. 4. Apresentação dos resultados alcançados em forma de Painel. 5. Relatório Final do Estágio

Bibliografia

Básica:
- Específica de cada estágio.

Complementar:
- Específica de cada estágio.
(10.316-0) Controle Ambiental

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Apresentar e discutir os principais poluentes, suas causas e efeitos e a legislação pertinente. Analisar os métodos de controle e discutir sua adequação a casos práticos. Desenvolver nos alunos o espírito crítico para análise da questão ambiental, sobretudo no que diz respeito à atuação do Engenheiro Químico.

Bibliografia

Básica:

Complementar:

(10.514-7) Controle de Processos 2

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Introduzir o aluno nas técnicas de controle de processos por computador e mostrar as diferenças entre um sistema de controle contínuo e um sistema de controle discreto. Apresentar metodologias para o controle de processos em batelada. Apresentar a transformada - Z como um método de desenvolvimento de modelos entrada-saída de sistemas discretos no tempo, necessários para a análise dinâmica e projeto de sistemas de controle discretos. Análise da estabilidade desses sistemas de controle. Apresentar ao aluno os avanços em controle de processos usando técnicas de controle preditivo. Realizar experiência de controle digital de processo.

Bibliografia

Básica:

Complementar:

(10.608-9) Projeto de Processos Químicos

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Consolidação e aplicação dos conhecimentos adquiridos em outros cursos. Integração dos conhecimentos em um projeto único elaborado por grupos de alunos. Elaboração de relatórios e projeto de unidades de processo. Estudo de viabilidade econômica de processos químicos.

Bibliografia

Básica:

Complementar:

(10.910-0) Engenharia de Processos Químicos Industriais

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Aplicação dos fundamentos da química e engenharia química aos processos químicos industriais. Apresentação da indústria química brasileira do ponto de vista econômico e estratégico. Descrição e discussão sobre obtenção dos principais produtos químicos inorgânicos, orgânicos e produtos da indústria de fermentação e alimentos, bem como das propriedades e aplicações dos produtos, da sua situação no Brasil e das implicações
decorrentes para o meio ambiente. Visualização dos processos químicos na escala real na indústria (apenas para oferecimento em caráter regular). Adquirir experiência no preparo e apresentação de um seminário e elaboração de relatórios.

Bibliografia

Básica:

Complementar:

DÉCIMO PERÍODO

(03.502-5) Materiais para a Indústria Química

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Descrever o campo dos materiais classificando-os segundo diversos critérios. Fornecer princípios básicos de estrutura e propriedades com aplicação na seleção e especificação de materiais para a Indústria Química.

Bibliografia

Básica:

Complementar:

Bibliografia

Básica:

- Específica de cada trabalho.

Complementar:

- Específica de cada trabalho.
(10.609-7) Projeto de Instalações Químicas

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Consolidar os conhecimentos obtidos ao longo do curso através da elaboração do projeto de uma unidade química utilizando metodologias adequadas.

Bibliografia

Básica:

Complementar:
3.9.2. Disciplinas Optativas Técnicas

(03.035-0) Mineralogia e Tratamento de Minérios

Número de Créditos: 04 (3P/1P)

Bibliografia

Básica:

Complementar:

1. ANDERY, P.A. Tratamento de Minérios e Hidrometalurgia. FIEP, 1980.

(07.623-6) Engenharia Eletroquímica

Número de Créditos: 04 (4P)

Objetivos Gerais da Disciplina: Dar conhecimentos gerais de eletroquímica através da compreensão da descrição e funcionamento de processos eletroquímicos industriais e de fenômenos no dia a dia da prática da profissão.

Bibliografia

Básica:

Complementar:

(08.208-2) Equações Diferenciais Ordinárias

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: 1. Apresentar, de uma forma concisa, métodos elementares de resolução de equações diferenciais ordinárias. 2. Utilizar técnicas de álgebra linear para resolver sistemas lineares de equações diferenciais ordinárias. 3. Estudar a teoria qualitativa das equações diferenciais ordinárias, com ênfase nos teoremas de existência, unicidade e dependência contínua das soluções. 4. Introduzir o estudo da estabilidade de soluções, no sentido de Liapunov.

Bibliografia
Básica:

Complementar:

(09.682-2) A Metrologia e Avaliação de Conformidade

Número de Créditos: 04 (4P)

Objetivos Gerais da Disciplina: Esta disciplina pretende promover o conhecimento de aspectos básicos e desenvolver a Cultura Metrológica e de Avaliação de Conformidade aos estudantes de Engenharia/Fisica e possibilitar um caráter diferencial ao perfil profissional do Engenheiro/Fisico, para atuarem em tarefas de alto nível nas áreas científicas, industrial e de gestão. O objetivo desta disciplina é de proporcionar ao aluno os conceitos fundamentais empregados em setores relacionados à Ciência da Medicação, tais como noções gerais de metrologia, sua infra-estrutura mundial e o seu campo de atuação, ressaltando ainda a importância da Metrologia para o cidadão, para as Indústrias e para a sociedade como um todo, utilizando-se de exemplos práticos da aplicação de Metrologia no dia-a-dia.

Bibliografia

Básica:

Complementar:

1. Apostilas próprias (1 por módulo), preparadas pelo INMETRO e disponíveis no ambiente virtual de aprendizagem (AVA/UFSCar).

(10.007-2) Introdução à Tecnologia de Biocombustíveis

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Introduzir aos alunos uma visão geral do processo de produção de biocombustíveis envolvendo rotas, química e bioquímica.

Bibliografia

Básica:

Complementar:

(10.008-0) Metodologia de Pesquisa Científica

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Apresentar ao estudante a metodologia para desenvolvimento de um trabalho de iniciação científica.

Bibliografia

Básica:

2. HUME, L. M. Metodologia da Científica, AGIR Editora, 1987;

Complementar:

(10.009-9) Resolução de Problemas de Engenharia Química

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Fornecer aos alunos métodos de abordagem e solução de problemas não-convencionais de Engenharia Química. Desenvolver nos alunos: a) capacidade de identificar o problema; b) planejar o trabalho em grupos visando e a solução a partir de conhecimentos adquiridos ao longo do curso; c) identificar necessidade de novos conhecimentos.

Ementa: A metodologia básica é a do bem conhecido aprendizado baseado em problemas. A disciplina se desenvolverá a partir de seminários de resolução de problemas a serem realizados pelos alunos, dividindo em grupos, supervisionados pelo professor. Os alunos deverão dispor de ferramentas de informática.

Bibliografia

Básica:

Complementar:

(10.010-2) Análise e Controle de Qualidade de Biocombustíveis

Número de Créditos: 02 (1T/1P)

Objetivos Gerais da Disciplina: Introduzir aos alunos uma visão geral sobre o controle e a melhoria de qualidade de biocombustíveis, associados a especificações e normas técnicas. Avaliar os métodos de análise física e química empregados em variadas etapas da cadeia produtiva de biocombustíveis, desde o processamento da matéria-prima até a estocagem do produto.

Bibliografia

Básica:

Complementar:

(10.053-6) Convênio Optativa Técnica A

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Motivar a mobilidade acadêmica dos alunos; permitir ao aluno, cursar em outras instituições, disciplinas que não são oferecidas pela UFSCar e aproveitá-las para sua integralização curricular como disciplina optativa.
Ementa: A ementa será definida de acordo com a disciplina a ser cursada na instituição conveniada.

Bibliografia

Básica:

- Específica de cada disciplina.

Complementar:

- Específica de cada disciplina.

(10.054-4) Convênio Optativa Técnica B

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Motivar a mobilidade acadêmica dos alunos; permitir ao aluno, cursar em outras instituições, disciplinas que não são oferecidas pela UFSCar e aproveitá-las para sua integralização curricular como disciplina optativa.

Ementa: A ementa será definida de acordo com a disciplina a ser cursada na instituição conveniada.

Bibliografia

Básica:

- Específica de cada disciplina.

Complementar:

- Específica de cada disciplina.
(10.055-2) Convênio Optativa Técnica C

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Motivar a mobilidade acadêmica dos alunos; permitir ao aluno, cursar em outras instituições, disciplinas que não são oferecidas pela UFSCar e aproveitá-las para sua integralização curricular como disciplina optativa.

Ementa: A ementa será definida de acordo com a disciplina a ser cursada na instituição conveniada.

Bibliografia

Básica:

- Específica de cada disciplina.

Complementar:

- Específica de cada disciplina.

(10.056-0) Convênio Optativa Técnica D

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Motivar a mobilidade acadêmica dos alunos; permitir ao aluno, cursar em outras instituições, disciplinas que não são oferecidas pela UFSCar e aproveitá-las para sua integralização curricular como disciplina optativa.

Ementa: A ementa será definida de acordo com a disciplina a ser cursada na instituição conveniada.

Bibliografia

Básica:

- Específica de cada disciplina.

Complementar:

- Específica de cada disciplina.
(10.107-9) Termodinâmica de Biocombustíveis

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Estudos de métodos preditivos para equilíbrio líquido-vapor e equilíbrio das reações químicas referentes à produção de biocombustível.

Bibliografia

Básica:

Complementar:

(10.206-7) Sistemas Particulados

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Esta disciplina tem como objetivo a análise de um ou mais tópicos nos processos da engenharia Química onde a presença da partícula é fundamental como os processos de secagem, reação química heterogênea, separação, etc..

Ementa: 1. Dinâmica da partícula sólida. 2. Escoamento de fluidos em meios porosos e em colunas de recheio. 3. Hidrodinâmica da filtração e sedimentação. 4. Hidrodinâmica da
fluidizarão, leito de jorro e transporte de partículas. 5. Transferência de calor e massa em meios porosos. 6. Laboratório.

Bibliografia

Básica:

Complementar:

(10.207-5) Tópicos Especiais de Sistemas Particulados

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: O objetivo desta disciplina é reforçar os conceitos advindos dos Fenômenos de Transporte, através das aplicações do transporte de quantidade de movimento, calor e massa em operações específicas da Engenharia Química.

Ementa: 1. Tópicos envolvendo transporte de quantidade de movimento. 2. Tópicos envolvendo transporte de calor. 3. Tópicos envolvendo transporte de massa. 4. Tópicos envolvendo transporte de quantidade de movimento, calor e massa. 5. Laboratório.

Bibliografia
Básica:

Complementar:

(10.212-1) Processos de Separação em Meios Porosos

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: 1. Complementar os estudos dos processos de separação atendendo especificamente aqueles relativos aos sistemas particulados. 2. Conhecer os processos associados aos meios porosos e compreender os principais mecanismos envolvidos que permitem; projetar unidades industriais. 3. Explorar resultados que são obtidos a partir de técnicas próprias aplicadas a processos absorvivos e a processos eletroquímicos; 4. Promover a
opportunidade no sentido de contribuir para aparição de novas aplicações e à melhora dos processos existentes.

Ementa: 1. Equilíbrio termodinâmico. 2. Cinética e fatores controladores em adsorção e em eletroquímica. 3. Fenômenos de transporte em meios porosos. 4. Aplicações a processos absortivos. 5. Aplicações a Processos Eletroquímicos. 6. Uso do reator descontínuo ideal como técnica experimental. 7. Uso de técnicas específicas para a obtenção de parâmetros de projeto em adsorção e em eletroquímica.

Bibliografia

Básica:

Complementar:

(10.214-8) Introdução à Dinâmica dos Fluidos Computacional

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Aplicação dos conceitos básicos vistos nas disciplinas de fenômenos de transporte e de cálculo numérico na simulação computacional de fenômenos que envolvem fluidos em movimento com ou sem trocas de calor.
Ementa: 1. Técnicas de Discretização: métodos das diferenças finitas, volumes finitos e elementos finitos. 2. Solução das equações de navier-stokes. 3. Particularidades das equações de navier-stokes. 3.1. Condições de contorno típicas. 3.2 Geração da malha. 3.3 Métodos explícitos. 3.4 Métodos implícitos. 4. Métodos $k - \varepsilon$ para simulação de escoamentos turbulentos. 5. Introdução aos escoamentos multifásicos com particulados dispersos.

Bibliografia

Básica:

Complementar:

(10.307-1) Operações Unitárias da Indústria Química 4

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Complementar os conhecimentos na Área de Operações
Unitárias da Indústria Química, com aplicações na operação, análise e projeto de equipamentos.

Ementa: 1. Tópicos especiais de operações unitárias envolvendo transmissão de calor. 2. Tópicos especiais de operações unitárias envolvendo transmissão de calor e massa.

Bibliografia

Básica:

Complementar:

(10.309-8) Filtração de Gases

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Complementação da formação do Engenheiro Químico, com informações mais específicas sobre um dos ramos de atuação do futuro engenheiro: filtração de gases. Com isso, o aluno deverá tomar conhecimento do problema, obter uma descrição geral dos tipos de equipamentos disponíveis e participará de detalhamento de um ou mais equipamentos a partir de dados práticos.

Ementa: 1. Introdução. 2. Separadores gravitacionais. 3. Separadores centrífugos. 4. Filtros fibrosos e granulares. 5. Precipitadores eletrostáticos. 6. Lavadores. 7. Laboratório

Bibliografia
Básica:

Complementar:

(10.318-7) Cristalização Industrial

Número de Créditos: 04 (2T/2P)

Objetivos Gerais da Disciplina: Fornecer aos alunos os conhecimentos básicos e aplicados da cristalização e precipitação industriais. Complementar os conhecimentos de operações unitárias relativos à separação de fases por formação de sólido cristalino.

Ementa: 1. Equilíbrio de fases e termodinâmica de soluções. 2. Nucleação. 3. Crescimento cristalino. 4. Fenômenos secundários. 5. Balanços material e energético. 6. Tipos de cristalizadores. 7. Cinética de cristalização. 8. Laboratório de cristalização

Bibliografia

Básica:

Complementar:

(10.406-0) Introdução à Catálise Heterogênea

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Dar conhecimentos básicos sobre catálise heterogênea, propriedades de catalisadores sólidos e técnicas de caracterização. Aplicação em processos catalíticos industriais mais representativos.

Bibliografia

Básica:

Complementar:

(10.409-4) Tópicos em Reatores Químicos Heterogêneos

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Apresentar conceitos cinéticos e de fenômenos de transporte relativos a sistemas heterogêneos fluido-sólido com reações catalíticas bem como aplicações industriais de reatores heterogêneos catalíticos.

Bibliografia

Básica:

Complementar:

(10515-5) Controle de Bioprocessos

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: A fermentação industrial depende da utilização de sensores adequados e da utilização correta dos biorreatores e de seu adequado controle. O presente curso busca desenvolver as habilidades citadas para os engenheiros químicos que buscam um aprofundamento na área de processos bioquímicos.

Bibliografia

Básica:

Complementar:

(10.516-3) Métodos de Otimização Aplicados à Engenharia Química

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Proporcionar ao aluno um conhecimento dos conceitos de otimização, tanto a nível teórico quanto no nível de algoritmos, e mostrar a utilização da otimização em exemplos dentro da engenharia química.

Bibliografia

Básica:

Complementar:

(10517-1) Identificação De Processos Químicos

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: O objetivo desta disciplina é apresentar métodos de identificação de sistemas e suas aplicações em processos químicos.

Bibliografia
Básica:

Complementar:

4. KWONG, W. H. Introdução ao Scilab/Scicos. EdUFSCar, Coleção UAB, São Carlos, Brasil, 2010

(10.520-1) Segurança Industrial e Análise de Risco

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Aplicar os fundamentos básicos da engenharia química (envolvendo os balanços de massa e energia, mecânica dos fluidos, transferência de calor e massa, termodinâmica e operações unitárias) na análise e projeto de elementos e equipamentos
de processos associados à prevenção de perdas e operações seguras envolvendo materiais e/ou condições perigosas.

Ementa: Fornecer os fundamentos, métodos e aplicações para prevenção de acidentes pela identificação de perigos, avaliação e gerenciamento de riscos.

Bibliografia

Básica:

Complementar:

(10.611-9) Aproveitamento de Resíduos e Coprodução de Cadeias Biodiesel e Etanol

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Introduzir aos alunos um panorama geral de destinos úteis para resíduos e co-produtos das cadeias produtivas do etanol e do biodiesel, sejam com processos já consolidados ou ainda em fase de pesquisa. Stimular a busca de informações e a interação na construção do conhecimento. Estimular a visão global das cadeias produtivas da indústria química.

Ementa: Introdução e conceitos gerais. Vinhaça: otimização da etapa de destilação para minimização da produção; ajuste da composição e utilização como fertilizante; fermentação anaeróbia para produção de gás de síntese; outras aplicações. Leveduras: otimização da produção; utilização como fonte de proteínas e outras aplicações. Bagaço de cana-de-açúcar: utilização como fonte de energia (co-geração); hidrólise química e enzimática para produção de etanol. Aproveitamento de glicerol: reforma a vapor do glicerol para produção de hidrogênio e gás de síntese; produção de éteres e ésteres; outros subprodutos.

Bibliografia

Básica:

1. BRIDGEWATER, A. V. Biomass Pyrolysis Liquids.;

3. TOLMASQUIM, M.T. Fontes Renováveis de Energia no Brasil, Interciência, 2003;

Complementar:

(10.612-7) Produção de Biocombustíveis via Alcoolquímica

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Estudar processos de produção de novos combustíveis usando etanol como matéria prima. Estudar a rota alcoolquímica como substituta da rota petroquímica para produção de combustíveis.

Bibliografia

Básica:
1. Satterfield, C. N. Heterogeneous Catalysis in Industrial Practice,
2. McGraw-Hill, Encyclopedia of chemical processing and design; Mcketta J. J.,

Complementar:
Artigos de revistas técnicas especializadas da área.

(10.613-5) Produção de Biocombustíveis via Rotas Bioquímicas

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Introduzir aos alunos uma visão geral do processo de produção de biocombustíveis envolvendo rotas bioquímicas, desde a matéria-prima empregada, passando pelas etapas do processo até a análise do produto. Estimular a busca de informações na fronteira do conhecimento na área e a interação na construção do conhecimento.

Bibliografia
Básica:

Complementar:

(10.703-4) Introdução ao Tratamento Biológico de Águas Residuárias Industriais

Número de Créditos: 04 (3T/1P)

Bibliografia

Básica:

3. VON SPERLING, M. Princípios básicos do tratamento de esgotos. Departamento de Engenharia Sanitária e Ambiental - UFMG, 1995
Complementar:

(10.705-0) Tópicos Em Biotecnologia

Número de Créditos: 04 (3T/1P)

Objetivos Gerais da Disciplina: Fazer com que o aluno se familiarize com os avanços mais recentes em aplicações da Biotecnologia e capacitá-lo para que possa lidar com os mesmos assim como também para que possa gerar adaptações e inovações dentro do seu contexto social.

Bibliografia

Básica:

Complementar:

(10.711-5) Introdução ao Tratamento Anaeróbio de Águas Residuárias

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Fornecer visão geral dos princípios básicos de digestão anaeróbia e fornecer critérios relativos ao projeto e à operação de reatores anaeróbios, com ênfase aos tanques sépticos, aos filtros anaeróbios e aos reatores de manta de lodo (UASB).

Bibliografia
Básica:

(11.109-0) Garantia e Controle da Qualidade

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Capacitar os alunos nos conceitos e métodos de planejamento, controle e melhoria da qualidade.

Bibliografia

Básica:

Complementar:

(33.017-5) Microbiologia Aplicada à Área Tecnológica

Número de Créditos: 04 (2T/2P)

Objetivos Gerais da Disciplina: Proporcionar ao aluno conhecimentos básicos relativos a Microbiologia na Área Tecnológica.

Bibliografia

Básica:

5- INGRAHAM, J.L.; INGRAHAM, C.A. Introdução à microbiologia : uma abordagem baseada em estudos de casos. 3 ed. Cengage Learning, 2010 tecnológica

Complementar:
3.9.3. Disciplinas Optativas de Ciências Humanas e Sociais

(16.207-8) História das Revoluções Modernas

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina:
1. Discutir com os alunos o conceito de revolução, seu conteúdo, em diversos autores, assim como uma tipologia dos movimentos revolucionários.
2. Levar o aluno a efetuar leituras e tarefas dirigidas no campo do tema especial que escolheu.

Ementa:
1. Conceitos, teorias e tipologias da Revolução.
2. As Fontes para o Estudo dos Movimentos Revolucionários.

Bibliografia

Básica:

Complementar:

(18.002-5) Filosofia da Ciência

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Capacitar o aluno através da apresentação da história da Filosofia da Ciência e dos seus problemas atuais, a compreensão da ciência desenvolvendo uma abordagem crítica e sua inserção social.

Bibliografia

Básica:

Complementar:

(18.004-1) Introdução a Filosofia

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: O objetivo geral do Curso de Introdução à Filosofia é iniciar o estudante nos principais tópicos de reflexão filosófica. Destaca-se nesta tarefa o desenvolvimento das capacidades crítica e argumentativa dos estudantes, permitindo que estes últimos superem gradualmente a visão ingênua da realidade, seja no campo profissional, seja no seu cotidiano.

Bibliografia

Básica:

Complementar:

(20.007-7) Introdução a Psicologia

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Identificar e descrever a função orientadora da história dos principais sistemas de Psicologia na caracterização do objeto e método desta área de conhecimento. Identificar possibilidades de aplicação no esclarecimento e solução de problemas relacionados ao comportamento humano.

Bibliografia

Básica:

Complementar:

Objetivos Gerais da Disciplina: Propiciar a aproximação dos falantes do Português de uma língua viso-gestual usada pelas comunidades surdas (LIBRAS) e uma melhor comunicação entre surdos e ouvintes em todos os âmbitos da sociedade, e especialmente nos espaços educacionais, favorecendo ações de inclusão social oferecendo possibilidades para a quebra de barreiras linguísticas.

Ementa:

Bibliografia

Básica:

Complementar:

(37.012-6) Sociedade e Meio Ambiente

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Permitir ao aluno a compreensão teórico-histórica dos problemas ambientais contemporâneos. Tendo como referência as especificidades da sociedade brasileira - onde interpenetram-se o caráter tardio da economia, o forte intervencionismo, a pressão pelo ajuste neoliberal e o alto grau de miséria social- analisar-se-á a gênese e o desenvolvimento dos problemas ambientais, a solução proposta e sua efetividade. Outrossim, pretender-se-á integrar o trato da questão ambiental brasileira ao processo de globalização, analisando a adequação das estruturas políticas ambientais específicas à lógica de um mercado e de demandas sociais ecologicamente comprometidos no quando da economia mundial.

Bibliografia

Básica:

4. CUNHA, Manuela Carneiro; ALMEIDA, Mauro W. B. “Populações tradicionais e conservação ambiental”. In: Cultura com aspas e outros ensaios. São Paulo: Cosac Naify, 2009

Complementar:

(10.050-1) Convênio Optativa Humanas A

Número de Créditos: 04 (4T)

Objetivos Gerais da Disciplina: Motivar a mobilidade acadêmica dos alunos; permitir ao aluno, cursar em outras instituições, disciplinas que não são oferecidas pela UFSCar e aproveitá-las para sua integralização curricular como disciplina optativa.
Ementa: A ementa será definida de acordo com a disciplina a ser cursada na instituição conveniada.

Bibliografia

Básica:
- Específica de cada disciplina.

Complementar:
- Específica de cada disciplina.

(10.051-0) **Convênio Optativa Humanas B**

Número de Créditos: 02 (2T)

Objetivos Gerais da Disciplina: Motivar a mobilidade acadêmica dos alunos; permitir ao aluno, cursar em outras instituições, disciplinas que não são oferecidas pela UFSCar e aproveitá-las para sua integralização curricular como disciplina optativa.

Ementa: A ementa será definida de acordo com a disciplina a ser cursada na instituição conveniada.

Bibliografia

Básica:
- Específica de cada disciplina.

Complementar:
- Específica de cada disciplina.

(10.052-8) **Convênio Optativa Humanas C**

Número de Créditos: 02 (2T)
Objetivos Gerais da Disciplina: Motivar a mobilidade acadêmica dos alunos; permitir ao aluno, cursar em outras instituições, disciplinas que não são oferecidas pela UFSCar e aproveitá-las para sua integralização curricular como disciplina optativa.

Ementa: A ementa será definida de acordo com a disciplina a ser cursada na instituição conveniada.

Bibliografia

Básica:
- Específica de cada disciplina.

Complementar:
- Específica de cada disciplina.

3.10. Matriz Curricular e Periodização das Disciplinas

Neste item é apresentada a matriz curricular do Curso de Engenharia Química com a periodização das disciplinas.

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(07.013-0)</td>
<td>Química 1 – Geral</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(07.018-1)</td>
<td>Química Experimental Geral</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(08.111-6)</td>
<td>Geometria Analítica</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(08.910-9)</td>
<td>Cálculo 1</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(09.110-3)</td>
<td>Física Experimental A</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(09.901-5)</td>
<td>Física 1</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.004-8)</td>
<td>Introdução à Engenharia Química</td>
<td></td>
<td>02</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>390</td>
</tr>
<tr>
<td>Código</td>
<td>Nome da Disciplina</td>
<td>Requisito</td>
<td>Crédito</td>
<td>Horas</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>(06.203-0)</td>
<td>Português</td>
<td></td>
<td>02</td>
<td>30</td>
</tr>
<tr>
<td>(07.103-0)</td>
<td>Química Inorgânica</td>
<td>(07.013-0)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(07.014-9)</td>
<td>Química 2 – Geral</td>
<td>Recomendado(07.013-0)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(08.920-6)</td>
<td>Cálculo 2</td>
<td>08910-9</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(08.940-0)</td>
<td>Séries e Equações Diferenciais</td>
<td>08910-9</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(09.111-1)</td>
<td>Física Experimental B</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(12.003-0)</td>
<td>Mecânica Aplicada 1</td>
<td>(08.111-6)E(09.901-5)</td>
<td>02</td>
<td>30</td>
</tr>
<tr>
<td>(12.005-7)</td>
<td>Desenho Técnico</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>28</td>
<td>420</td>
</tr>
</tbody>
</table>

* Requisito Recomendado

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(03.080-5)</td>
<td>Eletrotécnica</td>
<td>(09.111-1)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(07.406-3)</td>
<td>Química Analítica Geral</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(08.311-9)</td>
<td>Métodos de Matemática Aplicada</td>
<td>(08.940-0)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(08.930-3)</td>
<td>Cálculo 3</td>
<td>(0.920-6)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(09.903-1)</td>
<td>Física 3</td>
<td>(09.901-5)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.511-2)</td>
<td>Balanços de Massa e Energia</td>
<td>Recomendado(08.920-6)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(37.008-8)</td>
<td>Sociologia Industrial e do Trabalho</td>
<td>-</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>28</td>
<td>420</td>
</tr>
</tbody>
</table>

* Requisito Recomendado

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(03.086-4)</td>
<td>Mecânica dos Sólidos Elementar</td>
<td>(08.910-9)E(12.003-0)</td>
<td>02</td>
<td>30</td>
</tr>
<tr>
<td>(07.208-7)</td>
<td>Química Orgânica</td>
<td>(07.013-0)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(07.404-7)</td>
<td>Química Analítica Experimental</td>
<td>(07.018-1)E(07.406-3)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.104-4)</td>
<td>Termodinâmica para Engenharia Química 1</td>
<td>Recomendado(08.930-3)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.208-3)</td>
<td>Fenômenos de Transporte 1</td>
<td>Recomendado(09.901-5)OU/E(08.930-3)OU/E(10.511-2)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.518-0)</td>
<td>Projetos de Algoritmos e Programação Computational para Engenharia Química</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(16.400-3)</td>
<td>Economia Geral</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Optativa de Ciências Humanas</td>
<td></td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>30</td>
<td>450</td>
</tr>
</tbody>
</table>

* Requisito Recomendado
<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5º Período</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(08.302-0)</td>
<td>Cálculo Numérico</td>
<td>(08.910-9) E (08.111-6) E (10.518-0)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.105-2)</td>
<td>Termodinâmica para Engenharia Química 2</td>
<td>Recomendado (10.104-4)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.209-1)</td>
<td>Fenômenos de Transporte 2</td>
<td>Recomendado (10.208-3)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.312-8)</td>
<td>Operações Unitárias da Indústria Química 1</td>
<td>Recomendado (10.208-3)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.410-8)</td>
<td>Cinética e Reatores Químicos</td>
<td>Recomendado (07.014-9) OU/E (10.511-2)</td>
<td>06</td>
<td>90</td>
</tr>
<tr>
<td>(15.006-1)</td>
<td>Introdução ao Planejamento e Análise Estatística de Experimentos</td>
<td>-</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>390</td>
</tr>
</tbody>
</table>

* Requisito Recomendado

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6º Período</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(07.638-4)</td>
<td>Eletroquímica Fundamental</td>
<td>(10.105-2) E (10.410-8)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.210-5)</td>
<td>Fenômenos de Transporte 3</td>
<td>Recomendado (10.209-1)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.211-3)</td>
<td>Laboratório de Fenômenos de Transporte</td>
<td>Recomendado (10.208-3) E (10.209-1) Co-requisito (10.210-5)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.313-6)</td>
<td>Operações Unitárias da Indústria Química 2</td>
<td>Recomendado (10.209-1)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.408-6)</td>
<td>Projeto de Reatores Químicos</td>
<td>Recomendado (10.410-8) Recomendado (10.105-2)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.512-0)</td>
<td>Análise e Simulação de Processos Químicos</td>
<td>Recomendado (08.302-0) OU/E (08.311-9) OU/E (10.511-2)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.706-9)</td>
<td>Engenharia Bioquímica 1</td>
<td>Recomendado (10.410-8)</td>
<td>02</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>26</td>
<td>390</td>
</tr>
</tbody>
</table>

* Requisito Recomendado
** Co-Requisito
<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(07.618-0)</td>
<td>Físico Química Experimental</td>
<td>(10.410-8) E (10.105-2)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.314-4)</td>
<td>Operações Unitárias da Indústria Química 3</td>
<td>Recomendado (10.210-5) OU/E (10.105-2)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.315-2)</td>
<td>Laboratório de Operações Unitárias da Indústria Química</td>
<td>Recomendado (10.312-8) E (10.313-6) E Co-requisito (10314-4)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.605-4)</td>
<td>Desenvolvimento de Processos Químicos 1</td>
<td>Co-requisito (10.315-2)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.707-7)</td>
<td>Engenharia Bioquímica 2</td>
<td>Recomendado (10.706-9)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(11.204-6)</td>
<td>Organização Industrial</td>
<td>-</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(11.302-6)</td>
<td>Engenharia Econômica</td>
<td>-</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>28</td>
<td>420</td>
</tr>
</tbody>
</table>

* Requisito Recomendado
** Co-Requisito

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10.513-9)</td>
<td>Controle de Processos 1</td>
<td>Recomendado (10.511-2) OU/E (10.512-0)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.606-2)</td>
<td>Desenvolvimento de Processos Químicos 2</td>
<td>(10.605-4)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.607-0)</td>
<td>Síntese e Otimização de Processos Químicos</td>
<td>Recomendado (10.314-4) OU/E (10.408-6)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.708-5)</td>
<td>Laboratório de Engenharia das Reações</td>
<td>Recomendado (10.408-6) E (10.707-7)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(11.130-9)</td>
<td>Gestão da Produção e da Qualidade</td>
<td>(15.006-1)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>20</td>
<td>300</td>
</tr>
</tbody>
</table>

* Requisito Recomendado
<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10.005-6)</td>
<td>Estágio Supervisionado</td>
<td>Recomendado (10.605-6)</td>
<td>12</td>
<td>180</td>
</tr>
<tr>
<td>(10.316-0)</td>
<td>Controle Ambiental</td>
<td>Recomendado (10.208-3)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.514-7)</td>
<td>Controle de Processos 2</td>
<td>Recomendado (10.513-9)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.608-9)</td>
<td>Projeto de Processos Químicos</td>
<td>Recomendado (10.607-0)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.910-0)</td>
<td>Engenharia dos Processos Químicos Industriais</td>
<td>Recomendado (07.638-4 OU/E (10.314-4 OU/E (10.408-6 OU/E (10.707-7))</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>28</td>
<td>420</td>
</tr>
</tbody>
</table>

* Requisito Recomendado

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome da Disciplina</th>
<th>Requisito</th>
<th>Crédito</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(03.502-5)</td>
<td>Materiais para Indústria Química</td>
<td>Recomendado (07.623-6)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>(10.006-4)</td>
<td>Trabalho de Graduação</td>
<td>(10.005-6)</td>
<td>08</td>
<td>120</td>
</tr>
<tr>
<td>(10.609-7)</td>
<td>Projeto de Instalações Químicas</td>
<td>(10.608-9)</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Optativa Técnica 1</td>
<td>-</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Optativa Técnica 2</td>
<td>-</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>264</td>
<td>3.960</td>
</tr>
</tbody>
</table>

Total de Créditos: 264 que equivalem a 3960 horas, sendo 3660 horas em sala de aula.

4. Infraestrutura Geral

4.1 Infraestrutura Necessária ao Funcionamento do Curso

A infraestrutura utilizada peloCurso de Graduação em Engenharia Química dispõe basicamente de salas de aulas teóricas e de laboratórios de Informática, Química, Física e Engenharia Química que também são utilizados para aulas práticas de outros cursos da área de exatas da UFSCar. Na sequência são apresentados os espaços físicos disponíveis e os principais laboratórios com os respectivos equipamentos:
Salas de Aulas Teóricas

O curso de graduação em Engenharia Química utiliza a infraestrutura de salas de aula do campus São Carlos da UFSCar. O campus conta com 10 prédios de salas de aulas teóricas denominados internamente de AT (Aula Teórica).

Laboratório de Química Analítica - 120m²
- Balanças: 03, - Destilador: 01, - Estufa: 04, - Centrifuga: 03, - Mufla: 02, - Chapa de aquecimento: 01, - Digestor: 01, - Espectrofotômetro: 01, - Registrador: 01, - pHmetro: 04, - Fotômetro chama: 01.

Laboratório de Química Geral – 200m²
- Balança: 07, - Bomba de vácuo: 03, - Estufa: 02, - Agitadores: 15, - Banho Maria:05, - Capela: 02, - Microcomputador: 01.

Laboratório de Físico-Química – 100m²
- Destilador: 01, balança analítica: 03, estufa: 02, refratômetro: 02, phmetro: 02, espectrofotômetro: 01, banho termostático: 05.

Laboratório de Física Experimental A - 66 m²

Laboratório de Física Experimental B - 70,00 m²
- Gerador de função: 14, - Multímetro digitais: 20, - Osciloscópio de 20mhz - duplo feixe: 10, - Fonte DC de 0 a 30VDC: 10.

Núcleo de Laboratórios de Ensino à Engenharia - NuLEEn – UFSCar

Além dos laboratórios didáticos localizados nos Departamentos de Química e Física, a UFSCar possui os Laboratórios de apoio do Núcleo de Laboratórios de Ensino à Engenharia (NuLEEN) que tem três laboratórios de Física e três laboratórios de Química para atender ao ciclo básico das engenharias.
Laboratório Didático de Engenharia Química - 382,32 m²
- Kits para medidas de perfis de velocidade: 04, - Kits para medidas de perda de carga em tubulações: 04, - Kit para medidas de tempos de esvaziamento de tanques: 01, - Experimento de Reynolds: 01, - Viscosímetro tipo Cannon-Fenske: 04, - Viscosímetro rotacional tipo Brookfield: 04, - Viscosímetro capilar: 05, - Kits para determinação de condutividade térmica efetiva radial: 03, - Kits para determinação de perfis de temperatura: 03, - Kits para medidas de perda de carga em tubulações: 04, - Célula a diafragma p/ determ. do coef. de líquido: 03, - Célula de Stefan p/ determ. do coef. de difus. em sist. gasoso: 12, - Célula p/ determ. do coef. de transf. de massa entre fluidos: 04, - Kits p/ determ. do coef. de transf. de massas gás-líquido: 04, - Kits de reação enzimática da hidrólise de sacarose: 03, - Kits de fermentação alcoólica: 03, - Kits de reação de descoloração de cristal viol./hidrox.sódio: 03, - Kits de agitação e aeração de caldos de fermentação: 02, - Bomba centrifuga em série e em paralelo: 01, - Bomba centrifuga NPSHr: 01, - Bomba centrifuga - altura monométrica: 01, - Ventilador - pressão estática e vazão: 01, - Filtro à vácuo: 01, - Filtro prensa: 03, - Leito fluidizado - água: 02, - Leito fluidizado - ar: 01, - Moinho de bolas: 01, - Trocador de calor duplo tubo: 02, - Trocador de calor casco e tubos: 02, - Trocador de calor a placas: 01, - Caldeira a vapor: 01, - Secador a bandejas: 01, - Caldeira elétrica: 01, - Caldeira a vapor: 01, - Secador a bandejas: 01, - Coluna de destilação - pratos perfurados: 01, - Coluna de destilação - recheio: 01, - Extrator líquido - líquido: 01, - Extrator sólido - líquido contínuo: 01, - Coluna de Absorção: 01, - Coluna de Adsorção: 01.

Laboratório "Aberto" de Processos Químicos – 220 m²
- Ar condicionado POLTI, 12000 BTU: 1, - Geladeira (Refrigerador BRASTEMP): 1, - Dropsgelo (máquina de fabricar gelo), produzindo 50 kg de gelo em um ciclo de 24 h: 1, - Freezer horizontal METALFRIO: 1, - Balança eletrônica de precisão, marca MARTE, mod. AS-5500, duas escalas de pesagem: 500 - 0,01g, 5000g - 0,1g: 1, - Balança Analítica Eletrônica Digital, capacidade: 210g-0,1mg, interface, calibração automática, marca QUIMIS: 1, - Mufla, temperatura até 1200 0C, potência de 4000 W, marca QUIMIS: 1, - estufa para esterilização e secagem, temperatura até 250 ºC, tamanho 60x50x50, marca FANEM: 2, - Autoclave, capacidade 137 Litros: 1, - Estufa para secagem de bagaço de cana e torta, tipo Spencer, temperatura até 200 0C, marca TECNAL: 1, - Incubadora refrigera rada com agitação orbital (Shaker), marca TECNAL: 1, - Picnômetro com termômetro, 0 a 35 0C, calibrado com junta padrão, 25 ml: 5, - Picnômetro com termômetro, 0 a 35 0C, calibrado com junta padrão, 50 ml: 5
- Micro Destilador de Álcool, tipo Kjeldhal, marca TECNAL: 1, - Pipetador de rápida descarga, capac. 10 ml, marca BOECKO: 5, - Pipetador de rápida descarga, capac. 25 ml, marca BOECKO: 5, - Termômetro de - 10 a 150 ºC, div. 1 / ºC, marcaJIPO: 20, - Psicrômetro giratório manual, marca SALCAS: 2, - Condutivímetro portátil, marca DIGIMED: 1, - Termômetro eletrônico de indicação digital, 4 ½ dígitos, de -30 a 150 ºC, com sensores de superfície e de penetração, marca TEXTO: 1, - Manômetro e vacuômetro de coluna com reservatório de fluido em nylon-tecnil com cabeçote provido de espigão para conexão de mangueira, escala de alumínio de 0 a 1500 mm, marca SALVI CASAGRANDE: 2, - Cronômetro digital, marca BOECKO: 20, - Medidor de pH (pHmetro), precisão de ± 0,01 pH ou ± 1 mv, marca QUIMIS: 2, - Termo-higrômetro analógico para fixação em parede, mostrador de 100 mm de umidade, sistema de cabela, escala de 0 a 100% H.R., temperatura através de sistema bimetálico, escala de 0 a 40ºC: 2, - Agitador magnético com aquecimento: 3, - Multímetro digital com potência ativa reativa e aparente (INTERFACE PARA MEDIDA EM CIRCUITO TRIFÁSICO): 1, - Banho termoestatizado, marca MARCONI: 2, - Fototacômetro, marca TEXTO: 2, - 02 (duas) mantas aquecedora para balão de 1000 mL e 01 (uma) manta aquecedora para balão de 2000 mL, marca QUIMIS: 3, - Centrífuga para tubos de 15 ml, marca FANEM: 1, - Sistema para ensaio de floculação, disposto de agitação com movimento uniforme em 6 cubas, com distribuidor e coletor de amostras. Velocidade de rotação de 10 a 120 rpm. Cubas quadradas com capac. de 2 L, marca POLICONTROL (FlocControl Analógico): 2, - Espectrofotômetro UV-VIS, FARMACIA - IMPORTADO: 1, - Bomba de vácuo, duplo estágio, vazão de até 93 l/min e pressão de até 10-4 mbar, marca MARCONI: 1, - Bomba peristáltica, Marca MASTERFLEX, vazão de 17-1700 mL/min, Prod. Number Z37,510-1 com acessórios e mangueiras, ref. SIGMA/98 - IMPORTADO: 4, - Agitador Mecânico, marca TECNAL: 3, - Agitador de peneira para análise granulométrica: 1, - Conjunto de peneiras para análise granulométrica. Além desse conjunto de peneiras de latão adquirido em 09/10/2000, em 22/10/01 foram compradas 5 peneiras de inox, 1 fundo de inox, e 1 tampa de inox, para serviços com materiais corrosivos: 1, - Microscópio Biológico Binocular, marca QUIMIS: 2, - Liquidificador: 2, - Forno microondas: 1 - Bomba de vácuo e de ar comprimido, marca TECNAL: 2, - Bomba dosadora de pistão de alta pressão com variador de velocidade e atenuador de pulsação, faixa de vazão de 0,025 a 1,5 mL/min, 110 V, ref.COLE-PARMER (E-74450-00, E-07115-55), IMPORTADO: 2, - Medidor controlador de fluxo mássico com acessórios, ref. COLE-PARMER (E-33115-64, E-33116-60, E-33116-00, E-33116-80), IMPORTADO: 3, - Trocador de calor casco e tubo miniautra com kit
de montagem, marca EXERGY, mods. 23-405-2.4 e 10-00268-1, IMPORTADO: 2, - Forno temperatura controlada e três rampas de aquecimento (Tmáx=1000°C), munido de vaporizador marca MAITEC: 1, - Válvulas micrométricas (diversos modelos) para ajuste de vazões de fluidos.: 10, - Analisador de gases para dióxido de carbono e dióxido de enxofre, marca TEXTO: 1, - Unidade Didática de Destilação, mod. UDCA/EV, marca ELETTRONICAVENETA, IMPORTADO: 1, - Unidade didática de reação, modelo REC-3/EV, ref. ELETRÔNICA VENETA - IMPORTADO: 1, - Sistema integrado para determinação de DBO, marca QUIMIS: 1, - Refratômetro, digital, portátil, QUIMIS, modelo QI 107D142 com as seguintes características: 0 a 42% Brix; resolução 0,1%; precisão 0,2%; volume de amostra até 1 mL: 1, - Bomba peristáltica com vazões de 1500 mL/h até 15 L/h, para alimentação de biorreatores: 2, - Bombas dosadora peristáltica com vazões de até 80 L/h, para alimentação de biorreatores: 2, - Bomba peristáltica com vazões de até 600 mL/h, para utilização em coluna de destilação: 5, - Switch ótico 3Com 10/100 Mbps, 4 portas, para otimização da rede de informática que serve o Laboratório de Desenvolvimento de Processos Químicos: 1, - balança eletrônica de precisão para pesagens até 4 kg, aproximadamente: 1, - Cristalizador, visando complementar os materiais necessários para os estudos na linha de concentração do açúcar, uma da atividades prevista no projeto: 1, - Fermentador/reator em substituição ao item 58 - unidade didática de reação e, visando complementar os materiais necessários para os estudos na linha de fermentação alcoólica, uma da atividades prevista no projeto: 1, - Incubadora refrigerada com agitação orbital (Shaker), visando complementar os materiais necessários para os estudos na linha de fermentação alcoólica, uma da atividades prevista no projeto: 1, - Forno temperatura controlada e três rampas de aquecimento (Tmáx=1000°C), munido de vaporizador marca MAITEC, visando complementar os materiais necessários para os estudos na linha de desidratação catalítica do etanol, uma da atividades prevista no projeto: 2, - 02 (duas) mantas aquecedora para balão, incluindo acopladores de juntas, visando complementar os materiais necessários para os estudos na linha de destilação do etanol, uma da atividades prevista no projeto: 2, - Estufa universal elétrica (100x70x90 cm): 1, - Refratômetro de Abbe: 1, - agitador de tubos de ensaio "Vortex": 1, - Evaporador Rotativo 180 ºC: 1, - Medidor de Vácuo: 1, - Oxímetro portátil: 1, - PHmetro com compensação de temperatura: 1, - Termômetro portátil digital: 1, - Destilador de Água 5 l/h: 1, - Forno Mufla (0,60 x 0,60 x 0,70 m): 1.
Recursos de Informática

Ao ingressarem na UFSCar, todos os estudantes recebem um nome de usuário e uma senha que permite a utilização dos recursos do Laboratório de Informática e da Internet local. Os estudantes recebem também um e-mail institucional que poderão utilizar enquanto estiverem matriculados e são cadastrados no sistema Moodle da UFSCar.

Os estudantes têm acesso aos equipamentos de informática localizados na Secretaria Geral de Informática (SIn), onde os mesmos tem total capacidade de conexão à Internet. A SIn conta com aproximadamente 120 computadores em seu prédio para utilização dos estudantes. A equipe da SIn/UFSCar tem também a responsabilidade de instalar e manusear os programas computacionais solicitados pelos docentes quando necessário para o andamento das aulas. Geralmente esses programas são de caráter livre e advêm de fontes seguras, principalmente de instituições de ensino e pesquisa nacionais e internacionais, governamentais ou privadas.

A SIn dispõe de salas de aula informatizadas para aulas na graduação. Além de duas salas no próprio prédio, a SIn possui mais 7 salas distribuídas nos prédios de sala de Aulas Teóricas (duas salas no AT2, uma sala no AT4, duas salas no AT7, uma sala no AT9, uma sala no AT10) e uma na Biblioteca Comunitária da UFSCar.

- Laboratório de Informática da Graduação (LIG-EQ) – 20 m²
- Laboratório de Desenvolvimento de Processos Químicos (Lab-DPQ)
 6 computadores.

Ainda, existem 2 laboratórios para uso em disciplinas específicas que necessitam de sistemas computacionais como disciplinas de informática e de análise, simulação e controle de processos químicos, entre outras:

- Sala 58 de responsabilidade do Departamento de Engenharia Química
 28 computadores
- Sala especial da Secretaria de Informática (SIn)
 50 computadores

Biblioteca Comunitária – 9000 m²

A Biblioteca Comunitária, que além do acervo geral de coleções impressas e digitais possui várias bases de dados e algumas coleções especiais, atende a comunidade interna
(docentes, pesquisadores, alunos e técnicos-administrativos) e a comunidade externa (cidadãos em geral).

4.2. Corpo Docente e Técnico-administrativo para o Curso

Vários departamentos da UFSCar oferecem disciplinas para o Curso de Engenharia Química sendo o Departamento de Engenharia Química (DEQ) o majoritário. Segue lista dos docentes do DEQ responsáveis por disciplinas oferecidas ao Curso de Engenharia Química.

Adilson José da Silva
(Prof. Adjunto D.E.)
Bacharel em Química (UFSCar, 2004)
Mestre em Biotecnologia (UFSCar, 2007)
Doutor em Biotecnologia (UFSCar, 2011)

Adriana Paula Ferreira
(Prof. Adjunto D.E.)
Bacharel em Química (UFV, 2003)
Mestre em Engenharia Química (UFSCar, 2005)
Doutora em Engenharia Química (UFSCar, 2009)

Alberto Colli Badino Júnior
(Prof. Titular D.E.)
Engenheiro Químico (UFSCar, 1988)
Mestre em Engenharia Química (UFSCar, 1991)
Doutor em Engenharia (EPUSP, 1997)

Alice Medeiros de Lima
(Prof. Adjunto D.E.)
Engenheira Química (UFU, 2007)
Mestre em Engenharia Química (UFU, 2010)
Doutora em Engenharia Química (UFSCar, 2015)

André Bernardo
(Prof. Adjunto D.E.)
Engenheiro Químico (USP, 1999)
Mestre em Engenharia Química (UNICAMP, 2002)
Doutor em Engenharia Química (UFSCar, 2007)

Antonio Carlos Luperni Horta
(Prof. Adjunto D.E.)
Engenheiro Físico (UFSCar, 2005)
Mestre em Biotecnologia (UFSCar, 2008)
Doutor em Engenharia Química (UFSCar, 2011)

Antonio José Gonçalves da Cruz
(Prof. Associado D.E.)
Engenheiro Químico (UFSCar, 1993)
Mestre em Engenharia Química (UFSCar, 1996)
Doutor em Engenharia Química (UFSCar, 2000)

Cláudio Alberto Torres Suazo
(Prof. Associado D.E.)
Engenheiro Químico (Universidade Nacional Autônoma de Honduras, 1974)
Mestre em Engenharia de Alimentos (EPUSP, 1981)
Doutor em Engenharia Química (EPUSP, 1985)

Edson Luiz Silva
(Prof. Associado D.E.)
Engenheiro Químico (UFSCar, 1983)
Mestre em Engenharia Química (UFSCar, 1987)
Doutor em Hidráulica e Saneamento (EESC-USP, 1995)
Ernesto Antonio Urquieta Gonzalez
(Prof. Associado D.E.)
Engenheiro Químico Facultad de Ingenieria –
Universidad Técnica del Estado - Santiago –
Chile, 1975)
Mestre em Engenharia Química (UFSCar, 1987)
Doutor em Ciências e Engenharia de Materiais (UFSCar, 1992)

Everaldo César da C. Araújo
(Prof. Associado D.E.)
Engenheiro Químico (EPUSP, 1978)
Mestre em Engenharia (EPUSP, 1986)
Doutor em Engenharia (EPUSP, 1997)

Fábio Bentes Freire
(Prof. Associado D.E.)
Engenheiro Elétrico (EESC-USP, 1995)
Mestre em Engenharia Química (UFSCar, 1998)
Doutor em Engenharia Química (USP, 2003)

Felipe Fernando Furlan
(Prof. Adjunto D.E.)
Engenheiro Químico (UFSCar, 2009)
Mestre em Engenharia Química (UFSCar, 2012)
Doutor em Engenharia Química (UFSCar, 2016)

Fernanda Perpétua Casciatori
(Prof. Adjunto D.E.)
Engenheira de Alimentos (UNESP, 2008)
Mestre em Engenharia e Ciências de Alimentos (UNESP, 2011)
Doutora em Engenharia e Ciências de Alimentos (UNESP, 2015)

Francisco Guilherme Esteves Nogueira
(Prof. Adjunto D.E.)
Bacharel em Química (UFLA, 2008)
Mestre em Agroquímica e Agrobioquímica (UFLA, 2010)
Doutor em Química/Físico-Química (IQSC/USP, 2014)

Gabriela Cantarelli Lopes
(Prof. Adjunto D.E.)
Engenheira Química (UFSCar, 2005)
Mestre em Engenharia Química (UNICAMP, 2008)
Doutora em Engenharia Química (UNICAMP, 2012)

Gustavo Dias Maia
(Prof. Associado D.E.)
Engenheiro Químico (UFSCar, 2001)
Mestre em Engenharia Química (UFSCar, 2003)
Doutor em Engenharia Química (UFSCar, 2007)

João Batista Oliveira dos Santos
(Prof. Adjunto D.E.)
Engenheiro Industrial Químico (FAENQUIL, 1995)
Mestre em Engenharia Química (UNICAMP, 1998)
Doutor em Engenharia Química (UNICAMP, 2003)

João Paulo Silva Queiroz
(Prof. Adjunto D.E.)
Engenheiro Químico (UFPE e UVa –Espanha, 2009)
Mestre em Investigación en Ing. Termodinámica de Fluidos (Universidad de Valladolid, UVa, Espanha, 2010)
Doutor em Investigación en Ing. Termodinámica de Fluidos (Universidad de Valladolid, UVa, Espanha, 2014)
José Antonio Silveira Gonçalves
(Prof. Associado D.E.)
Engenheiro Químico (UEM, 1994)
Doutor em Engenharia Química (UFSCar, 2000)

José Mansur Assaf
(Prof. Titular D.E.)
Engenheiro de Materiais (UFSCar, 1978)
Mestre em Engenharia Química (EPUSP, 1985)
Doutor em Engenharia Química (EPUSP, 1992)

José Maria Corrêa Bueno
(Prof. Titular D.E.)
Bacharel em Química (IQA-UNESP, 1977)
Mestre em Engenharia Química (EPUSP, 1982)
Doutor em Engenharia (EPUSP, 1987)
Professor Titular (UFSCar, 2009)

Luis Augusto Martins Ruótolo
(Prof. Associado D.E.)
Engenheiro Químico (UFSCar, 1995)
Mestre em Engenharia Química (UFSCar, 1998)
Doutor em Engenharia Química (UFSCar, 2003)

Luiz Fernando de Moura
(Prof. Associado D.E.)
Engenheiro Químico (EPUSP, 1978)
Mestre em Engenharia Química (EPUSP, 1986)
Doutor em Ciências e Engenharia de Materiais (PPG-CEM-UFSCar, 1995)

Marcelo Perencin de A. Ribeiro
(Prof. Adjunto D.E.)
Engenheiro Químico (UFSCar, 2001)
Doutor em Engenharia Química (UFSCar, 2007)

Maria do Carmo Ferreira
(Prof. Associado D.E.)
Engenheira Química (UFSCar, 1986)
Mestre em Engenharia Química (UFSCar, 1991)
Doutora em Engenharia Química (UFSCar, 1996)

Mônica Lopes Aguiar
(Prof. Titular D.E.)
Engenheira Química (UFU, 1988)
Mestre em Engenharia Química (UFSCar, 1991)
Doutora em Engenharia Química (UFSCar, 1995)

Patricia Moreira Lima
(Prof. Adjunto D.E.)
Engenheira Química (UFU, 2001)
Mestre em Engenharia Química (UFSCar, 2004)
Doutora em Engenharia Química (UFSCar, 2008)

Paulo Waldir Tardioli
(Prof. Associado D.E.)
Engenheiro Químico (UEM, 1995)
Mestre em Engenharia Química (UEM, 1998)
Doutor em Engenharia (UFSCar, 2003)

Paula Rúbia Ferreira Rosa
(Prof. Adjunto D.E.)
Engenheira Química (UFU, 2003)
Mestre em Engenharia (UFU, 2010)
Doutora em Engenharia (UFSCar, 2014)

Rodrigo Béttega
(Prof. Adjunto D.E.)
Engenheiro Químico (UNIOESTE, 2003)
Mestre em Engenharia (UFSCar, 2006)
Doutor em Engenharia (UFSCar, 2009)
5. Questões Administrativas Gerais Afetas ao Curso

O Curso de Engenharia Química oferece 80 vagas por ano sendo o ingresso por processo seletivo (vestibular) no início do ano. O sistema adotado é de créditos e as condições necessárias para obtenção do Grau de Engenheiro Químico são as seguintes:

1. Cumprir integralmente o conjunto de disciplinas obrigatórias, num total de 252 (duzentos e quarenta e seis) créditos.
2. Cumprir, no mínimo, 08 (quatro) créditos em disciplina(s) Optativa(s) Técnica(s) eleita(s) pelo discente, dentro de um elenco aprovado pela Coordenação do Curso.
3. Cumprir, no mínimo, 04 (quatro) créditos em disciplina(s) Optativa(s) de Ciências Humanas e Sociais eleita(s) pelo aluno, dentro de um elenco aprovado pela Coordenação do Curso.

O tempo mínimo para integralização curricular é de 5 anos e o tempo máximo de 9 anos.

Em relação aos procedimentos de integralização dos cursos de Engenharia, estes se pautam pelas prerrogativas legislativas constituintes do Parágrafo 1º, Artigo 1º do Parecer CNE/CES nº 329/2004.

“...§1º Caberá às Instituições de Educação Superior estabelecer os tempos mínimos e máximo de sua integralização curricular, de acordo com os respectivos sistemas e regimes de matrícula adotados, obedecendo ao mínimo anual de 200 (duzentos) dias de trabalho acadêmico efetivo, bem como à carga horária mínima estabelecida por esta Resolução.”

“III- os limites de integralização dos cursos devem ser fixados com base na carga horária total, computada nos respectivos Projetos pedagógicos do curso, observado os limites estabelecidos nos exercícios e cenários apresentados no Parecer CNE/CES no- 8/2007, da seguinte forma:

a) Grupo de Carga Horária Mínima de 2.400h: Limites mínimos para integralização de 3 (três) ou 4 (quatro) anos.
b) Grupo de Carga Horária Mínima de 2.700h: Limites mínimos para integralização de 3, 5 (três e meio) ou 4 (quatro) anos.
c) Grupo de Carga Horária Mínima de 3.000h e 3.200h: Limites mínimos para integralização de 4 (quatro) anos.
d) Grupo de Carga Horária Mínima de 3.600h e 4.000h: Limites mínimos para integralização de 5 (cinco)) anos.
e) Grupo de Carga Horária Mínima de 7.200h: Limites mínimos para integralização de 6 (seis) anos.

TOTAL DE CARGA DIDÁTICA DO CURSO

<table>
<thead>
<tr>
<th>Disciplinas</th>
<th>Créditos</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatórias</td>
<td>252</td>
<td>3780</td>
</tr>
<tr>
<td>Optativas Técnicas</td>
<td>08</td>
<td>120</td>
</tr>
<tr>
<td>Optativas em Ciências Humanas e Sociais</td>
<td>04</td>
<td>60</td>
</tr>
<tr>
<td>TOTAL</td>
<td>264</td>
<td>3960</td>
</tr>
</tbody>
</table>

DADOS GERAIS DO CURSO

Número de Vagas Anuais: 80 (Oitenta)
Regime escolar: sistema de créditos semestral
Turno de funcionamento: integral
Integralização Curricular prevista: 10 semestres
Prazo mínimo para a Integralização Curricular: 10 semestres
Prazo máximo para a Integralização Curricular: 18 semestres
Total de créditos: 264 (244 Créditos de aula + 12 créditos de Estágio Supervisionado + 8 créditos de Trabalho de Graduação)
Carga horária total: 3.960 horas, sendo 3.660 em disciplinas, 180 horas de Estágio e 120 horas de Trabalho de Graduação.
6. Bibliografia

BRASIL, Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos. Decreto no 5.626, de 22 de dezembro de 2005, Dispõe sobre Língua Brasileira de Sinais (LIBRAS).

Catálogo de Informações do Curso de Graduação em Engenharia Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, São Carlos, Outubro de 2001.

___________ Portaria GR nº 539/03, de 08 de maio de 2003. Regulamenta o Artigo 58 do Regimento Geral da UFSCar que dispõe sobre o prazo máximo para a integralização curricular nos cursos de graduação.

___________ Portaria GR nº 771/04, de 18 de junho de 2004. Dispõe sobre normas e procedimentos referentes às atribuições de currículo, criações, reformulações e adequações curriculares dos cursos de graduação da UFSCar.

___________ Portaria GR nº 461/06, de 07 de agosto de 2006. Dispõe sobre normas de definição e gerenciamento das atividades complementares nos cursos de graduação e procedimentos correspondentes.

___________ Portaria GR nº 522/06, de 10 de novembro de 2006. Dispõe sobre normas para a sistemática de avaliação do desempenho dos estudantes e procedimentos correspondentes.